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A B S T R A C T   

As the concentration of particulate organic carbon (POC) in the surface ocean plays a key role in marine 
biogeochemical cycles and ecosystems, its assessment from satellite observations of the global ocean is of sig
nificant interest. To achieve a global multi-decadal data record of POC by merging observations from multiple 
satellite ocean color missions, we formulated a new suite of empirical POC algorithms for several satellite sen
sors. For the algorithm development we assembled a field dataset of concurrent POC and remote-sensing 
reflectance, Rrs(λ), measurements collected in all major ocean basins encompassing tropical, subtropical, and 
temperate latitudes as well as the northern and southern polar latitudes. This dataset is characterized by a 
globally-representative probability distribution of POC with a broad range of values between about 10 and 1000 
mg m− 3. This development dataset was created with the use of additional inclusion and exclusion criteria based 
on well-assured and documented consistency of measurement protocols as well as specific bio-optical and par
ticle characteristics of seawater which are consistent with vast areas of open-ocean pelagic environments. 

To formulate the algorithms the development dataset was subject to parametric regression analysis. Overall we 
evaluated over seventy formulas for estimating POC from Rrs(λ) using seven distinctly different algorithmic 
categories, each with a fundamentally different definition of independent variable involving Rrs(λ). Through the 
goodness-of-fit analysis, we selected the best candidate POC algorithms, referred to as the hybrid algorithms, 
which are tuned specifically for the spectral bands of SeaWiFS, MODIS, VIIRS, MERIS, and OLCI satellite sensors. 
These hybrid algorithms consist of two components, the MBR (Maximum Band Ratio)-OC4 cubic polynomial 
function and BRDI (Band Ratio Difference Index) quintic polynomial function. The MBR-OC4 uses four spectral 
bands and the BRDI three spectral bands from the blue-green spectral region. The MBR-OC4 algorithm is used for 
POC > 25 mg m− 3 and the BRDI for POC < 15 mg m− 3. In the transition region the weighting approach is applied 
to POC derived from the two algorithmic formulas. While the main role of the BRDI is to improve POC estimates 
in ultraoligotrophic waters where POC is very low, the MBR-OC4 provides improvements, compared with the 
predecessor algorithms, over a broader range of POC but especially for relatively high POC values. A preliminary 
analysis of field-satellite matchup datasets based on SeaWiFS and MODIS-Aqua observations shows improved 
performance of hybrid algorithms compared with current standard algorithms for both SeaWiFS and MODIS. In 
addition, a reasonable consistency is demonstrated between POC derived from hybrid algorithms applied to 
example satellite observations with SeaWiFS, MODIS-Aqua, and VIIRS-SNPP. The suite of newly developed al
gorithms provides the potential next generation version of global algorithms that better represents the spatial 
and temporal variability within a broader range of POC than the predecessor global algorithms, while also of
fering a capability to generate a long-term sensor-to-sensor consistent data record of POC that begins with the 
launch of SeaWiFS mission in 1997.   
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1. Introduction 

The standing stock of particulate organic carbon (POC) in the upper 
sunlit layer of the ocean is linked to marine biogeochemical processes 
and ecosystem characteristics, such as carbon export from the surface to 
the deep ocean and the availability of food for marine biota. Whereas the 
particulate organic matter in the surface ocean is generated largely by 
photosynthesis in phytoplankton cells, other types of planktonic or
ganisms such as bacteria and zooplankton as well as non-living organic 
particles also contribute to POC. Although the POC stock is small 
compared to dissolved carbon pools in the ocean, the POC constituents 
have relatively short turnover times and are responsible for relatively 
large carbon fluxes. Numerous biological and chemical transformations 
and physical transport and mixing processes produce significant varia
tions in POC on different temporal and spatial scales. For example, the 
particulate organic matter can be partially exported from the surface 
ocean into the deeper layers of the ocean via the “biological pump”, 
transferred to higher trophic levels within the food web, and trans
formed into dissolved organic carbon (DOC) and dissolved inorganic 
carbon (DIC) pools (e.g., Eppley and Peterson, 1979; Fenchel, 1988; 
Volk and Hoffert, 1985; Volkman and Tanoue, 2002; Wakeham and Lee, 
1993). Local variations in POC can be also caused by transport of par
ticulate matter from distant locations, including transport of 
terrestrially-derived particulate matter (e.g., Bianchi et al., 1997; 
Lovecchio et al., 2017). 

Satellite-derived data record of POC in the surface ocean provides a 
means to quantify the magnitude and potential presence of multi-year 
trends in POC stock on global and basin scales in support of ocean 
biogeochemistry and ecosystem studies (e.g., Allison et al., 2010a; 
Duforêt-Gaurier et al., 2010; Gardner et al., 2006; Loisel et al., 2002; 
Stramska, 2009; Stramska and Cieszyńska, 2015). Monitoring the rates 
of change in POC in the upper ocean using satellite observations pro
vides a means for advancing a methodology to diagnose the POC fluxes, 
such as primary production, export to the deep ocean and trans
formations to DOC and DIC pools, and constrain the uncertainties of 
carbon budget (Allison et al., 2010a). The total POC pool in the upper 
ocean also provides essential information and constraints for the esti
mation of phytoplankton carbon biomass and carbon-based primary 
production from satellite observations (e.g., Behrenfeld et al., 2005; 
Behrenfeld et al., 2013; Evers-King et al., 2017; Kostadinov et al., 2016). 
The assimilation of satellite-derived POC products into global coupled 
models of physical, biogeochemical and radiative processes provides an 
added value in the quest for better understanding and quantifying the 
effects and fate of carbon entering the oceans from the atmosphere, and 
potential responses and feedbacks of ocean ecosystems to climate 
change. 

The development and application of remote-sensing algorithms for 
estimating the concentration of particulate organic carbon, POC [in 
units of mg m− 3], in surface waters from satellite observations of ocean 
color were initiated during the early years of operation of satellite 
mission of Sea-viewing Wide Field-of-View Sensor (SeaWiFS). The first 
POC algorithm was developed with field data from the Southern Ocean 
and was based on two empirical relationships linking the spectral 
remote-sensing reflectance of the ocean, Rrs(λ) [sr− 1], with the spectral 
backscattering coefficient of seawater, bb(λ) [m− 1], and the particulate 
backscattering coefficient bbp(λ) with POC (where λ is light wavelength 
in vacuum and was chosen from the green spectral region in the first 
POC algorithm) (Stramski et al., 1999). During the following decade 
several studies examined POC algorithms based on various empirical 
approaches. In one category of algorithms, the formulation of algorithms 
was based on coincident field measurements of POC and optical vari
ables including Rrs(λ) and inherent optical properties (IOPs) of seawater 
(Allison et al., 2010b; Pabi and Arrigo, 2006; Stramska and Stramski, 
2005; Stramski et al., 2008). Another category of algorithms was based 
on field measurements of POC and optical data that were not all 
collected in situ (satellite data products were included in the algorithm 

development) or were not collected during the same field experiments 
(Gardner et al., 2006; Loisel et al., 2001; Loisel et al., 2002; Mishonov 
et al., 2003; Son et al., 2009). This latter category has limitations related 
to mismatch between the temporal and/or spatial scales in the de
terminations of variables involved in the algorithm formulation. More 
recently, a few alternative approaches with potential for global appli
cations were proposed, specifically the estimation of POC from satellite- 
derived information on particle size distribution and relationship that 
converts particle size to carbon content (Kostadinov et al., 2016) and the 
estimation of POC from satellite-derived color index parameter (Le et al., 
2018). In recent years, increased efforts have been also made with a 
focus on POC algorithms for coastal environments (Hu et al., 2016; Le 
et al., 2017; Liu et al., 2015; Tran et al., 2019; Woźniak et al., 2016). The 
coastal environments impose distinctive challenges for optically-based 
POC algorithms, which are associated primarily with generally much 
larger range of variability in proportions of organic and inorganic par
ticles compared with open ocean environments (Woźniak et al., 2010). 
These challenges and the topic of remote-sensing of POC in such opti
cally complex aquatic environments are beyond the scope of this study. 

Several empirical algorithms in which POC is derived from mea
surements of Rrs(λ) or from a combination of Rrs(λ) and IOPs (especially 
the backscattering and beam attenuation coefficients) in open ocean 
environments were examined by Stramska and Stramski (2005) and 
Stramski et al. (2008). Given the field data available at that time, these 
studies suggested that the algorithm based on the blue-green band ratio 
of Rrs(λ) is a reasonable candidate for applications to the global ocean 
where the vast extent of open-ocean waters is generally characterized by 
relatively low surface POC extending to about 300 mg m− 3. The NASA 
Ocean Biology Processing Group (OBPG) currently produces POC as a 
standard global ocean color product which is derived from the empirical 
relationship between surface POC and the blue-green band ratio of 
remote-sensing reflectance. This algorithm was originally determined 
for SeaWiFS band ratio of Rrs(443 nm)/Rrs(555 nm) using POC and 
Rrs(λ) measurements from the eastern South Pacific and Atlantic Oceans, 
which covered a range of surface POC from about 10 to 300 mg m− 3 

(Stramski et al., 2008). This band-ratio algorithm was also adopted by 
NASA OBPG to spectral bands of Moderate Resolution Imaging Spec
troradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite 
(VIIRS) ocean color sensors. NASA’s implementation of these algorithms 
extends back to the beginning of the SeaWiFS mission in 1997. At pre
sent, a combination of SeaWiFS and subsequent ocean color missions, 
including MODIS-Terra and MODIS-Aqua as part of NASA-centered 
Earth Observing System (EOS) and VIIRS as part of NOAA/NASA part
nership missions of Suomi National Polar-Orbiting Partnership (SNPP) 
and Joint Polar Satellite System (JPSS), provides over 20 years of 
continuous satellite data of global POC product. 

As the EOS mission continues in its extended phase with SNPP 
serving as a bridge to the next generation JPSS, it is timely to reexamine 
and refine the global POC algorithms to ensure a continuity of multi- 
decadal POC data record based on observations with multiple satellite 
instruments. In the context of readiness of ocean satellite products as 
elements of a global ocean carbon observation system, POC was char
acterized as a product that should be exploited and further developed 
with subsequent need for global validation and selection of best algo
rithm (CEOS, 2014). This need was also supported in a recent study 
which examined the performance of several POC algorithms using a 
dataset of satellite-field matchups (Evers-King et al., 2017). 

In the present study we examine numerous candidate approaches for 
formulating the empirical POC algorithms to allow the estimation of 
surface POC directly from spectral remote-sensing reflectance, Rrs(λ). 
The primary goal is to obtain improved satellite instrument-specific al
gorithms for global applications, thereby preserving the backward 
continuity of satellite-derived POC data product, supporting the inte
gration of the existing multi-satellite data record, and readying the al
gorithms for continued JPSS mission as well as Sentinel-3 mission of the 
European Space Agency (ESA). Specifically, we formulate the global 
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POC algorithms for SeaWiFS, MODIS (for both Aqua and Terra satellite 
missions), and VIIRS (for both SNPP and JPSS-1/NOAA-20 satellite 
missions) as well as for MEdium Resolution Imaging Spectrometer 
(MERIS) and Ocean and Land Colour Instrument (OLCI) on the ESA 
Envisat and Sentinel-3 satellite missions. Our effort builds on assembling 
a field dataset of particular relevance to the development of global POC 
algorithm. Specifically, the development dataset consists of nearly 
simultaneous and collocated measurements of Rrs(λ) and POC in surface 
waters from a range of diverse and regionally-balanced environments 
within the global ocean, and is meant to cover a broader range of POC 
including polar regions which were not included in the current standard 
algorithm used by NASA OBPG. The presentation of our study consists of 
four main parts: (i) assembly of field dataset for the POC algorithm 
development, (ii) evaluation of numerous mathematical formulations 
for selecting the best candidate algorithms, (iii) description and char
acterization of final algorithms, and (iv) preliminary validation and 
example application. 

2. Algorithm development dataset 

2.1. Assembly of field dataset of POC and Rrs(λ) 

Empirical relationships obtained from the regression analysis of the 
underlying experimental data provide the most straightforward 
approach to formulation of ocean color remote-sensing algorithms. Such 
empirical relationships depend on specific sets of data involved in the 
algorithm development, which has implications to the performance of 
algorithms within the scope of their intended use. Because our objective 
is to develop global POC algorithms, our approach to assembling an 
underlying field dataset of POC and Rrs(λ) aims at creating a reasonably 
accurate representation of global relational patterns between these 
variables and hence allowing the determination of the representative 
average trendlines for the global ocean. 

Generating such globally representative datasets is challenging 
because it requires the use of multiple sources of data which are often 
subject to differences in measurement and data processing methodolo
gies. Recent efforts to compile large global databases from multiple data 
sources of in situ bio-optical measurements are described in Valente 
et al. (2016; 2019) and Aurin et al. (2018). Such efforts are intended to 
maximize the number of bio-optical data and their temporal and spatial 
distribution within a single unified database; for example in the data
base of Valente et al. (2019) coincident observations of Chla (chlor
ophyll-a concentration) and Rrs(λ) are available at 3814 oceanographic 
stations compiled from numerous data sources with contributions by 
many investigators. Whereas such large diverse sets of data have been 
used to formulate global Chla algorithms, it is important to note that the 
probability distribution of bio-optical variables in these databases can 
differ considerably (e.g., Chla distribution shifted to larger values) 
compared with global distribution based on satellite-derived values and 
the scatter of data points in bio-optical relationships is usually very 
large, for example more than one order of magnitude variation in Chla at 
any given value of the spectral band ratio of Rrs(λ) (O’Reilly and Wer
dell, 2019; Valente et al., 2019). In addition, because such large data
bases are created by merging multiple pre-existing processed datasets 
obtained using different instruments and different measurement and 
data processing methods, it is impossible to ensure that the same level of 
quality assurance and control is applied uniformly to all merged data. 
The process of merging large amounts of pre-existing datasets from 
various sources, with or without an attempt to conduct some data 
quality control, generally requires extensive automation and such 
merged datasets are unavoidably affected by varying degree of data 
quality and unpredictable uncertainties (Aurin et al., 2018; Valente 
et al., 2019). Probably the most unwanted effect on the development of 
empirical algorithms using such merged datasets is associated with the 
potential presence of subsets of data that are subject to unidentified 
methodological or measurement bias. 

Compared to Chla and Rrs(λ), coincident measurements of POC and 
Rrs(λ) are less numerous but our initial investigation of such data from 
multiple public data sources indicated the potential presence of sys
tematic differences in data patterns between different data sources 
(Stramski et al., 2006). In such cases it can be difficult or impossible to 
rule out the effects of methodological bias, at least in some datasets 
because of limited details in the available description of measurement 
and data processing protocols and/or the lack of replicate measure
ments. To address these limitations, in the present study we have taken a 
more targeted approach to assembling a dataset for development of 
global POC algorithms. Our approach does not aim at maximizing the 
number of coincident field observations of POC and Rrs(λ) by merging 
data from all or nearly all available data sources. Instead, the key criteria 
used in our approach are focused on well-assured consistency and 
documentation of measurement protocols and well-balanced global 
representation of data in terms of both geographical coverage and range 
of bio-optical properties of seawater. The main goal is to have a dataset 
that can represent well an average trendline of global relationship be
tween POC and Rrs(λ) over a broader range of POC compared to that 
which was used to formulate the current standard POC algorithm. As a 
result of this approach we assembled a dataset consisting of 139 paired 
observations of Rrs(λ) and near-surface POC collected during 15 cruises 
in diverse oceanic regions encompassing tropical, subtropical, and 
temperate latitudes as well as both the northern and southern polar 
latitudes. Fig. 1 depicts the locations of oceanographic stations where 
these measurements were made. 

Field observations in the Pacific Ocean were obtained on two cruises. 
The BIOSOPE (BIogeochemistry and Optics SOuth Pacific Experiment) 
cruise on the R/V L’Atalante sampled waters along a west-to-east tran
sect in the eastern South Pacific Ocean between the Marquesas Islands 
and the coast of Chile from 17 October to 15 December 2004 (Claustre 
et al., 2008; Stramski et al., 2008). The KM12–10 cruise on the R/V Kilo 
Moana took place in tropical waters off the coast of Hawaiian Islands 
from 28 May to 10 June 2012 (Johnsen et al., 2014). 

Field measurements in the Atlantic Ocean were conducted on two 
cruises on the R/V Polarstern. The ANTXXIII/1 cruise included the north- 
south transect in the eastern Atlantic between Germany and South Africa 
from 13 October to 17 November 2005 (Stramski et al., 2008). The 
ANTXXVI/4 cruise was along the transect from the southernmost part of 
Chile to Germany between 7 April and 17 May 2010 (Uitz et al., 2015). 
On this cruise the coincident POC and Rrs(λ) data were collected along 
the southern portion of this transect. 

Field data in the Indian Ocean were collected during the Arabian Sea 
Process Study (ASPS) as part of the U.S. Joint Global Ocean Flux Study 
(Smith et al., 1998). We use data from three cruises on the R/V Thomas 
G. Thompson in the Arabian Sea; TTN-045 from 14 March to 8 April 
1995; TTN-053 from 29 October to 25 November 1995, and TTN-054 
from 30 November to 26 December 1995. These cruises occurred dur
ing periods of Spring Intermonsoon, Fall Intermonsoon, and early 
Northeast Monsoon, respectively (Lee et al., 1998; Marra et al., 2000). 

Field observations in the Southern Ocean were obtained during the 
Antarctic Environment and Southern Ocean Process Study (AESOPS) as 
part of the U.S. Joint Global Ocean Flux Study (Smith Jr. et al., 2000) 
and also during the U.S. Antarctic Marine Living Resources (AMLR) 
research program (Lipsky, 2001). The AESOPS data were collected in the 
Ross Sea during the NBP97–8 cruise on the R/V Nathaniel B. Palmer from 
5 November to 13 December 1997 and two cruises (RR-KIWI 8 and RR- 
KIWI 9) on the R/V Roger Revelle in the Pacific sector of the Antarctic 
Polar Front Zone over the period 8 January – 19 March 1998 (Reynolds 
et al., 2001; Stramski et al., 1999). The AMLR2001 data were collected 
within a study area around the South Shetland Islands during the Leg 2 
cruise of the 2000/2001 field season (8 February – 5 March 2001) on the 
Russian R/V Yuzhmorgeologiya (Hewes et al., 2001). 

Field measurements in the western Arctic seas were made on four 
cruises. The MALINA (MAckenzie LIght aNd cArbon) cruise surveyed the 
southeastern Beaufort Sea during the period 31 July – 24 August 2009 
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on the CCGS Amundsen (Antoine et al., 2013; Matsuoka et al., 2012). 
Two cruises on the USCGC Healy in the Chukchi Sea and western 
Beaufort Sea were associated with the NASA ICESCAPE (Impacts of 
Climate on EcoSystems and Chemistry of the Arctic Pacific Environ
ment) program during two successive years; the HLY1001 cruise from 18 
June through 16 July 2010 and HLY1101 from 28 June through 24 July 
2011 (Arrigo, 2015; Reynolds and Stramski, 2019). The fourth Arctic 
cruise (MR17-05C) on the R/V Mirai sampled the Chukchi and Beaufort 
Seas over the period 23 August – 21 September 2017 (Shiozaki et al., 
2019). 

It is important to emphasize that not all paired observations of Rrs(λ) 
and POC collected during the 15 cruises, which passed the data quality 
control process, were included in our algorithm development dataset. To 
create this final dataset, we applied additional inclusion criteria based 
on bio-optical and particle characteristics of seawater which are 
consistent with vast areas of open-ocean pelagic environments and 
hence most suitable for the development of global ocean algorithms. We 
used two threshold criteria involving the ratios of the absorption coef
ficient of chromophoric dissolved organic matter (CDOM), ag(412), to 
POC and Chla. Specifically, the final dataset includes data with ag(412)/ 
POC ≤ 0.00077 m2/mg C and ag(412)/Chla ≤0.581 m2/mg Chla. These 
threshold ratios were determined from the cruises in the Pacific and 
Atlantic Oceans where all measurements satisfied these inclusion 
criteria. Most data collected during the four Arctic cruises did not satisfy 
these CDOM-related criteria, which is indicative of relatively high con
centrations of CDOM in these waters. This was also the case for some 
data from the NBP97-8 cruise in the Ross Sea and AMLR2001 cruise in 
the vicinity of the South Shetland Islands. In addition, some data from 
the Arctic were collected in waters dominated by mineral particles. To 
exclude such cases from our final dataset we disregarded data with the 
POC/SPM ratio less than 0.1 (where SPM is the mass concentration of 
suspended particulate matter). Such low values of POC/SPM are indic
ative of mineral-dominated particulate assemblages (Woźniak et al., 
2010). 

We also applied a bottom depth criterion in the creation of final 
dataset. One approach to avoid or minimize the effects associated with 
bio-optical complexity of coastal and shallow water environments 
would be to accept data collected only in deep pelagic environments off 
the continental shelf. However, given the available data such approach 
would limit the range of POC with a maximum value of only slightly 

above 300 mg m− 3. Therefore, to cover a broader range of POC, we 
applied the inclusion criterion of bottom depth ≥ 50 m. This allowed us 
to include 16 observations from the Arctic waters and extend the 
maximum value of POC in the final dataset to above 1000 mg m− 3. 
Importantly, although these Arctic observations were collected on the 
continental shelf where bottom depth varied between 50 and 100 m, 
they all satisfied the CDOM-related and POC/SPM criteria that are 
consistent with data collected in open-ocean pelagic environments. Out 
of the total number of over 100 paired observations of Rrs(λ) and POC 
collected on the four Arctic cruises, only these 16 observations satisfied 
all inclusion criteria used to create our final dataset. We also note that 
our POC algorithm development dataset includes measurements that 
were made over a broad range of solar zenith angle (θs) under clear skies, 
partly cloudy, or overcast conditions. For most observations (all Pacific, 
Atlantic, and Indian Ocean data except for one measurement in the 
Arabian Sea) the solar zenith angle was less than 60o and as low as 1o at 
one station during the BIOSOPE cruise. For the observations in the polar 
environments the lowest θs was about 43o and only 8 observations (out 
of the total of 50) were made at θs > 70o generally under overcast 
conditions. 

2.2. Characterization of field dataset 

Table 1 provides a summary of measures of central tendency and the 
range of values for the Apparent Visible Wavelength (AVW), POC, and 
Chla based on observations from the five ocean basins separately and the 
final global dataset. The AVW (in units of nanometers) represents a 
simple metric that effectively characterizes the spectral shape of Rrs(λ) 
(Vandermeulen et al., 2020). The mean and median values of AVW for 
our global dataset are about 460 nm. The AVW values as low as 433 nm 
were measured in ultraoligotrophic waters of the Pacific Ocean and the 
values as high as 530 nm in the Arctic waters. This is indicative of sig
nificant variation in the spectral shape of Rrs(λ) within our dataset, 
which is illustrated in Fig. 2. 

The POC and Chla values are, on average, lowest in the Pacific and 
Atlantic datasets, and highest in the Arctic dataset (Table 1). For 
example, the mean and median values of POC in the Pacific are about 54 
and 31 mg m− 3, respectively, whereas in the Arctic these values are 
about 7-fold higher. For Chla, the differences in the mean or median 
values between the Pacific and Arctic datasets are even higher, more 

Fig. 1. Location of 139 oceanographic stations in major oceanic basins where coincident field data of spectral remote-sensing reflectance, Rrs(λ), and surface 
concentration of particulate organic carbon, POC, were collected for the POC algorithm development dataset. 
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than 20-fold. In the global dataset, the mean and median values of POC 
are about 105 and 58 mg m− 3, respectively. For Chla these values are 
0.88 and 0.24 mg m− 3. The POC values span an 85-fold range from about 
12 to 1022 mg m− 3 and Chla covers approximately a 1000-fold range 
from 0.02 to 19.6 mg m− 3 with the minimum in the ultraoligotrophic 
waters of South Pacific Gyre and maximum in the Arctic waters. 

The probability distributions for the POC and Chla values in our POC 
algorithm development dataset are shown in Fig. 3. It is important to 
note that these probability density functions are consistent with results 
based on global satellite ocean color imagery, as also depicted in Fig. 3. 
The example monthly results of satellite-derived probability density 
functions of POC exhibit a maximum between about 30 and 50 mg m− 3 

and a median value of about 50 mg m− 3, which agree well with our 
algorithm development dataset (Fig. 3a, Table 1). For Chla the proba
bility distributions are also consistent with probability maxima located 
between about 0.05 and 0.1 mg m− 3. The distributions based on our 
field dataset and the global satellite imagery also exhibit similar positive 
(right-tailed) asymmetry. 

The relationship between POC and Chla also provides a useful 
characteristic of our dataset (Fig. 4). This relationship agrees well with a 
similar relationship derived from a large set of data collected within the 
euphotic layer of the pelagic ocean with bottom depths >300 m (Leg
endre and Michaud, 1999). The most frequently observed values of 

POC/Chla ratio based on global satellite imagery are between 300 and 
400 (Stramski et al., 2008) which is also consistent with the distribution 
of this ratio in our field dataset (not shown). Overall, the results in 
Figs. 3 and 4 support the representativeness of the assembled field 
dataset for the development of global POC algorithm. 

3. Measurement methods 

3.1. Measurements of Rrs(λ) 

The spectral remote-sensing reflectance just above the sea surface, 
Rrs(λ), is defined as a ratio Lw(λ)/Es(λ), where Lw(λ) ≡ Lu(λ, z = 0+) is the 
spectral water-leaving radiance with the vertical direction of photons 
travelling towards the zenith and Es(λ) ≡ Ed(λ, z = 0+) is the spectral 
downwelling plane irradiance, and both quantities are defined just 
above the sea surface at z = 0+. Table 2 provides background informa
tion on radiometric measurements during the different cruises included 
in this study. All determinations of Lw(λ) were made from underwater 
measurements of spectral upwelling radiance, Lu(λ, z), taken either at a 
single near-surface depth z = 0.2 m or from the vertical profile obtained 
within the ocean surface layer. The determinations of Es(λ) were made 
either directly from measurements of downwelling irradiance with an 
above-water sensor mounted on the vessel, or extrapolated from un
derwater vertical profile measurements of Ed(λ, z) within the surface 
layer. These differences are associated with specific instruments and 
methods of deployment used on different cruises (Table 2). 

The radiometric measurements and data processing are consistent 
with methods described in NASA and IOCCG protocols (Mueller and 
Austin, 1995; Mueller, 2003; IOCCG, 2019) although minor differences 
in details can occur between the cruises as different groups of in
vestigators carried out the radiometric measurements on different 
cruises (see Supplementary Material). The references listed in Table 2 
provide additional information on radiometric measurements and de
terminations of Rrs(λ) data used in this study. Given that all Rrs(λ) data 
were obtained consistently with in-water radiometry method following 
a protocol aimed at minimizing the overall measurement uncertainty 
due to various factors, such as instrument calibration and performance, 
deployment strategies, data reduction procedures, and effects of envi
ronmental conditions, it can be reasonably expected that the uncertainty 
of Rrs(λ) in our dataset is typically of the order of 5% or less (IOCCG 
Protocol Series, 2019). 

Table 2 also shows differences in the spectral coverage and wave
length interval between the cruises which depend on the radiometric 
instruments. Because our objective is to have the field data of Rrs(λ) 
which are spectrally matched with the nominal wavelengths of the 

Table 1 
Description and characterization of the final global dataset assembled for POC algorithm development. N is the number of paired radiometric and POC measurements.  

Ocean basin N Research cruises AVW [nm] 
Mean ± SD 

(Median; Range) 

POC [mg m− 3] 
Mean ± SD 

(Median; Range) 

Chla [mg m− 3] 
Mean ± SD 

(Median; Range) 

Pacific 38 BIOSOPE (N = 30) 
KM12–10 (N = 8) 

445.3 ± 15.9 
(440; 433–484) 

53.8 ± 62.7 
(31.1; 11.9–266.8) 

0.22 ± 0.39 
(0.07; 0.02–1.48) 

Atlantic 36 ANTXXIII/1 (N = 24) 
ANTXXVI/4 (N = 12) 

454.4 ± 12.6 
(452.5; 435–494) 

57.2 ± 20.2 
(54.0; 30.5–135.7) 

0.26 ± 0.18 
(0.22; 0.09–1.01) 

Indian 15 TTN045 (N = 3) 
TTN053 (N = 4) 
TTN054 (N = 8) 

465.1 ± 7.8 
(463; 453–481) 

76.5 ± 32.6 
(68.2; 46.9–159.0) 

0.33 ± 0.13 
(0.31; 0.13–0.68) 

Southern 34 NBP97–8 (N = 9) 
RR-KIWI 8 (N = 8) 
RR-KIWI 9 (N = 2) 
AMLR2001 (N = 15) 

463.9 ± 13.1 
(462.5; 446–495) 

96.2 ± 70.9 
(71.9; 20.6–315.6) 

0.58 ± 0.47 
(0.44; 0.07–1.59) 

Arctic 16 MALINA (N = 2) 
HLY1001 (N = 6) 
HLY1101 (N = 4) 
MR17-05C (N = 4) 

496.5 ± 18.9 
(499.5; 461–530) 

377.4 ± 318.6 
(212.1; 67.2–1022.1) 

4.99 ± 6.36 
(1.67; 0.09–19.60) 

Combined 139  
460.3 ± 20.6 

(458; 433–530) 
104.8 ± 153.4 

(57.6; 11.9–1022.1) 
0.88 ± 2.59 

(0.24; 0.02–19.60)  

Fig. 2. Spectra of remote-sensing reflectance, Rrs(λ), in the POC algorithm 
development dataset. Each given spectrum is color coded according to the value 
of Apparent Visible Wavelength (AVW) calculated from that spectrum. 
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standard Rrs(λ) data products of different ocean color sensors, the data 
from each cruise were interpolated to a common wavelength interval of 
1 nm between 400 and 700 nm. The linear interpolation was applied to 
measurements acquired at ~3.3 nm intervals with a HyperPro instru
ment. For all other Rrs(λ) measurements obtained with multispectral 
radiometers the interpolation results were obtained using Piecewise 
Cubic Hermite Interpolating Polynomial (PCHIP) which produces no 
extraneous overshoots and wiggles compared with other cubic inter
polation methods (Fritsch and Carlson, 1980). This interpolation 
approach was tested using hyperspectral data that were spectrally sub
sampled at appropriate wavelengths to create multispectral datasets 
simulating measurements with the multispectral radiometers. A very 
good agreement (to within a few percent) between the interpolated and 
measured data of Rrs(λ) was found at the blue and green wavelengths 
required for development of POC algorithms for different ocean color 
sensors. For example, for the MODIS wavelength of 488 nm, the median 
absolute percentage difference (MdAPD) between the PCHIP interpo
lated and measured values of Rrs(488) were less than 1% for all multi
spectral measurement scenarios that include SPMR, MER-2040, C-OPS, 

and PRR-800 instruments. For the MODIS wavelength of 547 nm, the 
MdAPD values were also less than 1% with the exception of about 3% for 
the multispectral measurement scenario of MER-2040 that was used on 
the Arabian Sea cruises. 

3.2. Measurements of POC 

The POC determinations were based on routine methodology used in 
oceanography since 1960s, which consists of collection of discrete water 
samples at predetermined depths, filtration of samples (volumes up to 
about 10 L in clear waters) to accumulate the particulate matter on fil
ters, and determination of carbon content on sample filters with a high- 
temperature combustion method (Menzel and Vaccaro, 1964). More 
specifically, all POC data included in this study were obtained with a 
method consistent with JGOFS protocols (Intergovernmental Oceano
graphic Commission, 1994) which were established before the oldest 
data in our dataset had been collected in the Arabian Sea in 1995. In 
brief, the key components of this method include filtration of water 
samples through precombusted 25 mm glass-fiber GF/F filters (What
man) under low pressure differential across the filters, storage of dried 
or frozen filters until post-cruise analysis, and determination of organic 
carbon content with standard CHN analysis involving high temperature 
combustion of sample filters after removing inorganic carbon through 
acidification treatment. A number of unused blank filters from each lot 
of precombusted filters were used to quantify the average background 
amount of organic carbon on filters, which was then subtracted from the 
sample measurements. These blank filters were subject to the same steps 
of the protocol as sample filters except that no water was filtered 
through them. Surface water samples for POC determinations were 
collected within the near-surface layer typically between 2 m and 5 m 
depth using a Niskin rosette sampler. Few exceptions included two 
samples from the Arabian Sea (TTN-054 cruise) which were taken at 13 
m and 20 m but still well within the surface mixed layer that extended to 
40–60 m at these stations. Except for 15 POC samples from the Arabian 
Sea (Balch et al., 2000; Gundersen et al., 1998) and 2 samples from the 
MALINA cruise (Doxaran et al., 2012), the post-cruise analysis of all 
remaining POC samples was conducted at the Marine Science Institute 
(MSI) Analytical Lab, University of California Santa Barbara, using a 
CEC 440HA Elemental Analyzer (Control Equipment Corp., now Exeter 
Analytical) (Hewes et al., 2001; Reynolds et al., 2016; Stramski et al., 
1999; Stramski et al., 2008). 

To minimize uncertainties in POC determinations the measurement 
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Fig. 3. Frequency distributions of (a) POC and (b) Chla for the POC algorithm development dataset and for examples of monthly composite data obtained from 
satellite observations with SeaWiFS. For the algorithm development dataset, the distributions are shown in terms of histograms (grey rectangles) and the corre
sponding probability density functions (solid lines). The width of histogram bins is variable to ensure a reasonably large number of occurrences within the bins (the 
total number of occurrences for the algorithm development dataset is 139). The satellite-based distributions are shown in terms of probability density functions 
(dashed and dotted lines). The satellite data of POC were derived with our SeaWiFS-specific hybrid algorithm described in Section 6. The satellite data of Chla 
represent the standard chlorophyll-a product generated by NASA OBPG. 
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which was obtained by Legendre and Michaud (1999) is also shown. 

D. Stramski et al.                                                                                                                                                                                                                               



Remote Sensing of Environment 269 (2022) 112776

7

protocol included sampling of water between the spigot and the 
bottommost part of the Niskin bottles to minimize the loss of particles 
due to settling, low vacuum during filtration (< 125 mmHg) to minimize 
potential loss of POC due to the impact of pressure differential across the 
filters, relatively large volumes of sample filtered to maximize the par
ticulate carbon retained on the filter relative to background carbon, 
proper care during sample handling to reduce exposure to contamina
tion, consistent acidification treatment to remove inorganic carbon from 
the samples, and determination of final POC values from replicate 
sample measurements. The average filtration volume ranged from about 
1.5 L (± 0.6 L) for the Arctic cruises where the POC was highest to 5.6 L 
(± 2.4 L) for the Pacific cruises where the POC was lowest. Only one 
sample from the HLY1001 cruise in the Arctic was obtained with a 
filtration volume < 1 L and 12 out of 30 BIOSOPE samples were obtained 
with the largest volume of 8.4 L. The average and median ratio of 
organic carbon mass on sample filters to carbon mass on dry blank filters 
was about 25 and 15, respectively. These data are based on 229 sample 
filters (which include replicate sample filters) from the Pacific, Atlantic, 
Southern Ocean and Arctic cruises (the Arabian Sea, AMLR2001, and 
MALINA cruises excluded because of the lack of information on blank 
values). Multiple blank filters were taken on each cruise and the average 
and median values of carbon mass based on all blank filters were about 
21 μg C and 12 μg C, respectively, which is consistent with earlier reports 
(e.g., Cetinić et al., 2012). Triplicate (at BIOSOPE stations) or duplicate 
(KM12–10, Atlantic, Arctic and some Southern Ocean stations) sample 
measurements were made and averaged to yield the final POC values. 
For 93 samples for which the replicate measurements were made the 
average and median values of the coefficient of variation (CV) are 6.8% 
and 4.7%, respectively. The CV was <10% for 77% of samples, <15% for 
91% of samples, and < 25% for 97% of samples, which is indicative of 
generally good precision of POC determinations. The reproducibility can 
be also characterized by the absolute difference between the pair of 
replicates divided by the mean POC for the replicate measurements. The 
average and median values (in percent) for this quantity based on all 
pairs of replicates in our dataset are about 9% and 5%, respectively. 

The accuracy of POC measurements is not exactly known and is likely 
variable among samples which is due to several sources of error which 
are impossible to completely eliminate and are difficult to accurately 

quantify (IOCCG Protocol Series, 2021). It is, however, reasonable to 
assume that samples differing from one another by less than about 5 mg 
m− 3 may not be resolved within current measurement uncertainties, 
which has particular ramifications for ultraoligotrophic waters where 
the lowest POC is less than 20 mg m− 3. 

Potential sources of uncertainties in POC determinations have been 
reviewed by Gardner et al. (2003). The overestimation of POC resulting 
from adsorption of dissolved organic carbon (DOC) onto filters during 
filtration received special attention in previous studies which proposed 
the use of filtrate blank filters to account for DOC adsorption (Cetinić 
et al., 2012; Gardner et al., 2003; Menzel, 1966; Moran et al., 1999). 
Novak et al. (2018) examined an empirical relationship between the 
mass of DOC adsorbed onto the GF/F filter and the volume of sample 
filtered, which suggests that maximum DOC retention of about 30 μg C is 
reached when more than about 0.6 L of seawater is filtered. These in
vestigators also provided the exponential fit to experimental data of 
DOC retention as a function of filtration volume. Whereas this empirical 
function can provide a means for correcting the existing POC measure
ments obtained without the use of filtrate blank filters, it is notable that 
the data used in the exponential curve fitting in the study of Novak et al. 
(2018) exhibited substantial variability, generally more than 3-fold 
variation in DOC retention values at any filtration volume including 
the saturation region. Part of this variability may be associated with the 
nature of sample filtered (Abdel-Moati, 1990). 

Despite these limitations, we examined this retroactive approach of 
DOC correction with our dataset obtained with the JGOFS protocol. We 
applied the DOC correction to 107 samples collected on all cruises 
except for the Arabian Sea, AMLR2001, and MALINA because infor
mation on the filtration volume for these cruises was not available. Our 
samples were obtained with relatively large filtration volumes of 3.7 ±
2.16 L (mean ± standard deviation for 107 samples). Therefore, the DOC 
retention estimated from the exponential relationship of Novak et al. 
(2018) was similar for all samples, 30 ± 1.9 μg C. The correction for 
these DOC-retention estimates in conjunction with our values of filter 
blanks reduced the values of POC in our dataset by 16% on average. The 
highest average reduction (~23% corresponding to about 7 mg m− 3) 
was associated with the data collected off the Hawaiian Islands on the 
KM12–10 cruise and the lowest reduction (~7–8% corresponding to 

Table 2 
Instrumentation and deployment methods for collection of radiometric data in the final POC algorithm development dataset.  

Research cruise Instrumenta Deployment Measured quantities WIb Spectral coverage Reference 

BIOSOPEc HyperPro Surface float Lu(z=0.2m), Es(z=0+) HS 350 – 800 nm at ~3.3 nm intervals Stramski et al. (2008) 
KM12-10d HyperPro Surface float as above HS as above Johnsen et al. (2014) 
ANTXXIII/1d SPMR Depth profile Lu(z), Ed(z) MS 339, 380, 412, 443, 470, 490, 510, 532, 555, 590, 620, 666, 683 nm Stramski et al. (2008) 
ANTXXVI/4d HyperPro Surface float Lu(z=0.2m), Es(z=0+) HS 350 – 800 nm at ~3.3 nm intervals Uitz et al. (2015) 
TTN045e MER-2040 Depth profile Lu(z), Ed(z) MS 412, 443, 490, 510, 555, 665 nm U.S. JGOFS Data System 

Rrs(λ) computed in this study 
TTN053e MER-2040 Depth profile as above MS as above as above 
TTN054e MER-2040 Depth profile as above MS as above as above 
NBP97-8d,f MER-2040 Depth profile Lu(z), Ed(z) MS 340, 380, 395, 412, 443, 455, 490, 510, 532, 554, 570, 665 nm Allison et al. (2010a) 
RR-KIWI 8d,f MER-2040 Depth profile as above MS as above as above 
RR-KIWI 9d,f MER-2040 Depth profile as above MS as above as above 
AMLR2001f PRR-800 Depth profile as above MS 313, 320, 340, 380, 395, 412, 443, 465, 490, 510, 520, 532, 555, 565,  

589, 625, 665, 710 nm 
Hewes et al. (2001) 

MALINAg C-OPS Depth profile Lu(z), Ed(z) MS 320, 340, 380, 395, 412, 443, 465, 490, 520, 532, 555, 560, 625, 665,  
670, 683, 710, 780 nm 

Antoine et al. (2013) 

HLY1001f PRR-800 Depth profile as above MS 313, 320, 340, 380, 395, 412, 443, 465, 490, 510, 520, 532, 555, 565,  
589, 625, 665, 710 nm 

Zheng et al. (2014) 

HLY1101f PRR-800 Depth profile as above MS as above as above 
MR17-05Cd HyperPro Surface float Lu(z=0.2m), Es(z=0+) HS 350 – 800 nm at ~3.3 nm intervals Data processing as ANTXXVI/4  

a Instruments: HyperPro (Free-Falling Hyperspectral Optical Profiler, originally Satlantic, Inc., now SeaBird Scientific) with an in-water unit deployed as Hyper
spectral Tethered Spectral Radiometer Buoy (HyperTSRB); SPMR (SeaWiFS Profiling Multichannel Radiometer, Satlantic, Inc.); MER-2040 (Marine Environmental 
Radiometer, Biospherical Instruments, Inc.); C-OPS (Compact Optical Profiling System, Biospherical Instruments, Inc.); PRR-800 (Profiling Reflectance Radiometer, 
Biospherical Instruments, Inc.) 

b WI is the light wavelength interval of radiometric measurements where MS is multi-spectral and HS is hyperspectral. 
c,e,f,g Principal Investigators for radiometric data collection: M. R. Lewis, C. Trees, B. G. Mitchell, and S. B. Hooker, respectively. 
d Data collected by our team from the Ocean Optics Research Laboratory at Scripps Institution of Oceanography (SIO) (d,f in collaboration with B. G. Mitchell). 
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2–14 mg m− 3) was associated with the Arctic data (Fig. 5). The POC 
values for the KM12–10 samples were very low, on average 32 mg m− 3, 
compared with more than 10-fold higher average POC for the Arctic 
samples. 

Whereas DOC adsorption is a source of positive bias (overestimation), 
there are several causes which can produce a negative bias (underesti
mation) of POC determined from seawater filtration using GF/F filters, 
such as incomplete retention of particles on filters, undersampling of rare 
large particles, and potential loss of POC due to the impact of pressure 
differential across the filters (Arthur and Rigler, 1967; Bishop and 
Edmond, 1976; Collos et al., 2014; Gardner, 1977; Gardner et al., 2003; 
Goldman and Dennett, 1985; Sharp, 1973; Sheldon, 1972). The retention 
of particulate matter on GF/F filters has critical significance because POC 
is operationally defined as a fraction of particulate organic carbon 
retained on a certain type of filter, such as the most commonly used glass- 
fiber GF/F filter with a nominal pore size of about 0.7 μm. Importantly, 
significant portion of small particles from submicrometer (colloidal) size 
range including viruses, bacteria, small picophytoplankton and organic 
detritus can pass GF/F filters (Li and Dickie, 1985; Lee and Fuhrman, 
1987; Lee et al., 1995; Stramski, 1990; Taguchi and Laws, 1988) and, 
therefore, is excluded from routine determinations of POC on these fil
ters. There is evidence that the fraction of POC that passes GF/F filters 
can be substantial; for example, Sharp (1973) reported that the organic 
colloidal fraction between 0.025 and 0.8 μm can contain more organic 
carbon than the particulate matter retained on the 0.8 μm pore size 
filters. 

In the context of estimation of POC from ocean reflectance it is also 
important to recall that fine submicrometer particles are highly abun
dant in oceanic waters (Koike et al., 1990; Wells and Goldberg, 1992, 
1994) and can make a significant contribution (>10%) to optical 
backscattering coefficient of suspended particles, especially in open- 
ocean environments (Stramski and Kiefer, 1991; Stramski and 
Woźniak, 2005; Zhang et al., 2020). As light backscattering is a major 
determinant of Rrs(λ), colloidal particles which are missed by the stan
dard POC method are likely to exert sizeable influence on Rrs(λ). Thus, 
from the standpoint of both the optical algorithms and the representa
tiveness of total POC pool in seawater, the most desirable approach 
would be to use POC data that include the contribution of colloidal 
particles. However, as yet no approach is available to routinely account 
for colloidal POC that is missed with the standard POC method. 

Ideally, POC determinations should be corrected for all positive and 

negative biasing effects; however, no standardized procedures presently 
exist to make such corrections (Gardner et al., 2003; Turnewitsch et al., 
2007; IOCCG Protocol Series, 2021). The correction for a single source of 
bias does not necessarily reduce the final error if biasing effects with 
opposite sign remain uncorrected. It is thus conceivable that POC 
measurements corrected for DOC adsorption alone do not provide better 
estimates of the total POC (i.e., including the colloidal contribution) 
compared with measurements that are uncorrected for both an over
estimation due to DOC adsorption and an underestimation due to 
missing colloidal POC. Consequently, if primary interest is in the total 
POC rather than operationally defined POC associated with particles 
that are strictly retainable on GF/F filters, the uncorrected measure
ments such as our POC dataset obtained with the JGOFS protocol 
without correction for DOC adsorption can be advantageous. 

The subsequent descriptions of algorithm development and formu
lations in Sections 4, 5, and 6, as well as example validation and 
application results in Section 7 are presented for the original POC 
measurements (i.e., uncorrected for DOC) of the entire algorithm 
development dataset (N = 139). However, in Section 8 we include a 
table with the algorithms based on the subset of data with DOC- 
corrected POC values (N = 107) which is described above. 

3.3. Ancillary measurements of Chla, SPM, and CDOM absorption 
coefficient 

As described in Section 2.1 our final algorithm development dataset 
includes data that passed certain inclusion criteria which involved, in 
addition to POC, the measurements of Chla, SPM, and CDOM absorption 
coefficient, ag(λ), made on discrete surface seawater samples. The 
methods of these ancillary measurements are described elsewhere. In 
brief, Chla data from the Pacific, Atlantic, and Arctic cruises were made 
with High Performance Liquid Chromatography (HPLC) (Reynolds et al., 
2016; Stramski et al., 2008; Uitz et al., 2015 and references therein). 
Chla data from the Southern Ocean were obtained using a fluorometric 
method for the AESOPS samples (Reynolds et al., 2001) and HPLC for 
the AMLR2001 samples (Hewes et al., 2001). The SPM measurements 
were used only in the process of selecting the Arctic data because some 
samples in our original Arctic database were characterized by relatively 
low organic vs. mineral contribution to particulate matter (i.e., low 
POC/SPM) and hence these samples were excluded from this study. The 
SPM measurements were made with a standard gravimetric method 
after collection of particulate matter by filtration onto GF/F filters 
(Reynolds et al., 2016). The absorption measurements of ag(λ) of the 
Pacific samples on the BIOSOPE cruise and the Arctic samples were 
made with an UltraPath instrument (Bricaud et al., 2010; Matsuoka 
et al., 2012). The Atlantic samples on the ANTXXIII/1 cruise were 
measured with a Point-Source Integrating-Cavity Absorption Meter, 
PSICAM (Röttgers and Doerffer, 2007) and the Southern Ocean samples 
with a spectrophotometric method using 10-cm pathlength quartz cu
vettes (Reynolds et al., 2001). 

4. Formulation and comparative analysis of various candidate 
algorithms 

By applying a regression analysis to our algorithm development 
dataset consisting of field measurements of Rrs(λ) and original POC (i.e., 
uncorrected for DOC adsorption), we examined seven distinct categories 
(CAT1 through CAT7) of algorithmic approaches. In each category we 
derived a number of alternative candidate formulas from a model-I 
regression between POC and an independent (explanatory) variable of 
X defined in terms of Rrs(λ). The model-I regression is suitable because 
the objective of this analysis is to establish predictive relationships (e.g., 
Ricker, 1973; Sokal and Rohlf, 1995). In the comparative analysis of all 
candidate algorithms the best-fit coefficients of each regression formula 
were obtained using both the ordinary least squares method and a robust 
regression method with Tukey’s bisquare weighting (Beaton et al., 1974; 
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Fox and Weisberg, 2011). The differences between the methods were 
small and the final algorithms reported in this paper are based on the 
robust regression method. 

The key difference between the seven algorithmic categories is 
associated with fundamentally different definitions of X. For example, 
these definitions are based on the use of spectral band ratios of Rrs(λ), 
the ratios of band differences of Rrs(λ), or the differences between band 
ratios of Rrs(λ). Within a given algorithmic category, the key differences 
between alternative formulas are associated with the number of spectral 
bands of Rrs(λ) employed in the X variable, as well as the degree of 
polynomial function used to fit the data. This approach encompassing 
the seven algorithmic categories, each including multiple candidate 
formulas, was applied in essentially the same manner to specific sets of 
spectral bands of SeaWiFS, MODIS, VIIRS, MERIS, and OLCI sensors. For 
brevity, here we limit our description of algorithmic categories to Sea
WiFS bands. Overall, the analysis of our development dataset with focus 
on SeaWiFS bands included over 70 candidate formulas across all seven 
algorithmic categories. The number of examined formulas differed be
tween the categories ranging from 4 in CAT1 to 21 in CAT6. 

For all algorithmic categories except Multiple Linear Regression 
(CAT7) the candidate algorithms were generated from the regression 
analysis applied to our dataset using the functional relationships that 
share one of these two general forms: 

log(POC) = f [log(X) ] (1a) 
log(POC) = f [X] (1b)  

where log is the logarithm with base 10 and f is a polynomial function of 
log(X) or X. 

The CAT1 algorithms are referred to as BR-PF (Band Ratio-Power 
Function) and have the form: 

log(POC) = a0 + a1 log(X) (2)  

where a0 and a1 are the best-fit coefficients, X = Rrs(λ1)/Rrs(555) and λ1 
is either 443, 490, or 510 nm. In this category we also considered X 
defined in terms of the maximum band ratio, MBR = max[Rrs(443)/ 
Rrs(555), Rrs(490)/Rrs(555), Rrs(510)/Rrs(555)], which is a maximum 
value selected from the three band ratios. The current NASA standard 
POC algorithms belong to this category. For example, for the SeaWiFS 
bands the standard algorithm written in the form of power function is 
POC = 203.2 [Rrs(443)/Rrs(555)]–1.034 (Stramski et al., 2008). 

The CAT2 algorithms are referred to as MBR-OCx (Maximum Band 
Ratio-OCx) where x denotes the number of spectral bands involved in 
the algorithm formula. We considered the algorithms with 4, 5, and 6 
bands, i.e., MBR-OC4, MBR-OC5, and MBR-OC6, respectively. These 
algorithms employ an approach that has been used in global ocean color 
(OC) chlorophyll algorithms (O’Reilly et al., 2000; O’Reilly and Werdell, 
2019) and have the form: 

log(POC) = a0 +
∑n

k=1
ak [log(X) ]k (3)  

where a0 and ak are the best-fit coefficients, n = 3, 4 or 5 denotes the 
degree of polynomial function, and X ≡ MBR is the maximum band ratio. 
For the MBR-OC4 algorithm, MBR = max[Rrs(443)/Rrs(555), Rrs(490)/ 
Rrs(555), Rrs(510)/Rrs(555)], for the MBR-OC5 the additional band ratio 
is Rrs(412)/Rrs(555), and the MBR-OC6 includes also Rrs(670)/Rrs(555). 
The Rrs(670)/Rrs(555) ratio was, however, never selected as the 
maximum band ratio in our dataset. 

The CAT3 algorithms are referred to as CI (Color Index) and have the 
form: 

log(POC) = a0 + a1 X (4)  

where X ≡ CI = Rrs(555) – [Rrs(λ1) + [(555 – λ1)/(670 – λ1)] [Rrs(670) – 
Rrs(λ1)]] and λ1 is either 443 or 490 nm. The CI approach builds upon a 
three-band reflectance difference concept which was originally 

developed to improve chlorophyll algorithms in waters with low Chla 
(Hu et al., 2012). This concept was also recently tested for the estimation 
of POC by Le et al. (2018) but the CI-based formula was determined using 
satellite-derived Rrs(λ) matched with in situ measurements of POC, rather 
than in situ dataset of paired Rrs(λ) and POC measurements. We fitted Eq. 
(4) to our dataset within two ranges of CI, < 0.0005 sr− 1 and ≥ 0.0005 
sr− 1. This is consistent with the approach used by Le et al. (2018). As part 
of the CAT3 category, we also tested a combination of CI and MBR-OC4 
algorithms following the concept applied to estimation of Chla (Hu et al., 
2012). We used the POC range of 50–70 mg m− 3 for the transition be
tween the algorithms. The CI algorithm is used below 50 mg m− 3 and the 
MBR-OC4 above 70 mg m− 3. Between these values, POC is estimated 
using a weighting approach similar to that used by Hu et al. (2012). Note 
also that according to Fig. 4 the POC range of 50–70 mg m− 3 corresponds 
approximately to the Chla range of about 0.15–0.27 mg m− 3 which is 
consistent with the transition range used in the NASA merged chlorophyll 
algorithm (O’Reilly and Werdell, 2019). 

The CAT4, CAT5, and CAT6 algorithms have the same general form 
but differ in terms of the definition of X: 

log(POC) = a0 +
∑n

k=1
ak Xk (5)  

where n is 3, 4, or 5. In the CAT4 algorithms, which are referred to as 
NDCI (Normalized Difference Carbon Index), X ≡ NDCI = [Rrs(555) – 
Rrs(λ1)] / [Rrs(555) + Rrs(λ1)] where λ1 is either 443, 490, or 510 nm. In 
this category, we also examined additional variants of algorithms in 
which X is defined as a maximum value selected from the set of the three 
basic NDCIs. We note that the NDCI was previously used in POC algo
rithms in the study of the Gulf of Mexico (Son et al., 2009) and it 
conceptually resembles the Normalized Difference Vegetation Index 
(NDVI) that was originally developed for land vegetation (Deering et al., 
1975; Rouse Jr. et al., 1973, 1974). 

The next category of algorithms, CAT5, is referred to as mNDCI 
(minimum Normalized Difference Carbon Index). In this category, Eq. 
(5) operates with X ≡ mNDCI = [Rrs(555) – max(Rrs(λ1), Rrs(λ2), 
Rrs(λ3))] / [Rrs(555) + max(Rrs(λ1), Rrs(λ2), Rrs(λ3))], where the “max” 
term represents a maximum reflectance selected from the three bands, 
λ1 = 412 nm, λ2 = 443 nm, and λ3 = 490 nm, or λ1 = 443 nm, λ2 = 490 
nm, and λ3 = 510 nm. We also tested a variant with four wavelengths in 
the “max” term, 412, 443, 490, and 510 nm. Accordingly, the mNDCI 
represents a minimum value of the ratio of the difference between the 
green (555 nm) and blue (or blue-green) reflectance to their sum. We 
note that this index was used in the study of Son et al. (2009) but was 
referred to as “Maximum Normalized Difference Carbon Index” 
(MNDCI). 

In the algorithmic category CAT6, referred to as BRDI (Band Ratio 
Difference Index), Eq. (5) was examined with three basic variants of X ≡
BRDI as follows: (i) [Rrs(443) – Rrs(555)] / [Rrs(490)], (ii) [Rrs(443) – 
Rrs(555)] / [Rrs(510)], and (iii) [Rrs(490) – Rrs(555)] / [Rrs(510)]. In 
addition, in this category we examined four additional variants of X 
defined in terms of the Maximum Band Ratio Difference Index (MBRDI). 
One variant of MBRDI represents a maximum value selected from the 
three basic BRDI variants. Each of the three remaining variants of 
MBRDI selects a maximum value from a different combination of two 
basic BRDI variants. 

The CAT7 algorithms are based on Multiple Linear Regression (MLR) 
approach in which we used reflectances at two or three bands. For 
example, a 2-band version has the form: 

log(POC) = a0 + a1 Rrs(λ1)+ a2 Rrs(λ2) (6) 

In this version we examined two combinations of λ1 and λ2, 443 and 
555 nm, and 490 and 555 nm. A 3-band version of MLR has an additional 
term a3 Rrs(λ3) where λ3 = 670 nm. We tested four variants of the 3-band 
MLR with the following pairs of λ1 and λ2: 443 and 510 nm, 443 and 555 
nm, 490 and 510 nm, and 490 and 555 nm. We note that similar MLR 
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approach was previously applied in the POC algorithm in the study of 
the Louisiana continental shelf (Le et al., 2017). 

Several statistical measures describing the goodness-of-fit of regres
sion functions for our development dataset were used in comparative 
analysis of numerous candidate algorithms, which aimed at selecting a 
few top candidate algorithms (Table 3). These measures are generally 
consistent with a suite of parameters commonly used in comparisons 
between modelled (e.g., algorithm-derived) and reference (e.g., 
measured) data involving ocean biogeochemical or bio-optical variables 
(Brewin et al., 2015; Doney et al., 2009; Friedrichs et al., 2009; Seegers 
et al., 2018; Stow et al., 2009). We found that the residual differences 
between the algorithm-derived and measured POC were characterized 
by nearly symmetric probability distributions with a maximum near 
zero. The MdR and MdB characterize systematic deviations, and the 
MdAPD and RMSD random deviations between the algorithm-derived 
POC and measured POC for the development dataset. The algorithms 
that provide the best overall fit to measured data have MdR close to 1 
and low values (the closer to zero the better) of MdB, MdAPD and RMSD. 
The errors of bio-optical models are often characterized by statistical 
indicators calculated in logarithmic space (Campbell et al., 2002; 
Seegers et al., 2018). Such indicators were also calculated for our 
analysis (see Table 3) and were consistent with information provided by 
statistics calculated in linear space. 

A model-II linear regression analysis based on the reduced major axis 
method (Kermack and Haldane, 1950; Ricker, 1973) was also applied to 
algorithm-derived POC vs. measured data of POC after logarithmic 
transformation of POC data. The best-fit coefficients of this regression 
function and the correlation coefficient (Table 3) aid in the assessment 
of the degree to which the algorithm-derived POC agrees with measured 
POC over the entire dynamic range. For example, the deviation of the 
slope S of the fitted regression from 1 can reveal the variation in the bias 
of algorithm-derived POC relative to measured POC across the range of 
measured values. The potential presence of bias at different ranges of 
POC was examined with plots of the difference between the algorithm- 
derived and measured POC vs. measured POC, which is similar to the 
Bland Altman analysis (Altman and Bland, 1983; Bland and Altman, 
1983). 

In addition, we conducted a pair-wise comparison analysis for 
comparing the skill of candidate algorithms (Seegers et al., 2018). In this 
analysis, the differences between the algorithm-derived and measured 
POC were calculated for each observation for each pair of algorithms 
involved in a pair-wise comparison. The algorithm with more wins (i.e., 
higher number of smallest differences) is considered superior. For each 
algorithmic category all possible pairs of candidate algorithms were 
subject to this analysis, and the algorithms were ranked according to the 
number of wins. Together, all computed statistical indicators including 
the ranking from pair-wise comparisons provided a suite of decision 
metrics for selecting the best candidate algorithm from each algorithmic 
category. The selected algorithms from each category were then subject 

to similar comparative analysis which eventually resulted in the selec
tion of a few best candidates for formulating the final algorithms. In 
brief, this selection was based upon consideration of a suite of multiple 
statistical metrics which were obtained by analyzing the entire devel
opment dataset as well as different subranges of POC within the dataset. 
The behavior of different algorithms at low POC was also considered. 

A summary of the results describing the comparative analysis of all 
candidate algorithmic categories is presented in Supplementary Mate
rial. Table S1 shows the best-fit regression functions from each algo
rithmic category for our algorithm development dataset. Fig. S1 
illustrates the regression functions for different algorithmic categories 
and all data comprising our dataset. Tables S2 and S3 provide the 
goodness-of-fit statistical parameters and selected pair-wise comparison 
results for the best-fit regression functions from different algorithmic 
categories. The comparative analysis of different candidate algorithms 
resulting in selection of algorithms from CAT2 and CAT6 as most suit
able for formulation of final algorithms is described in detail in Sup
plementary Material. 

5. Characterization of selected candidate algorithms 

The MBR-OC4 cubic polynomial function (Eq. 3) from CAT2 and 
BRDI quintic polynomial function (Eq. 5) from CAT6 were used in 
further analysis aimed at formulating the final algorithms. For brevity, 
we here limit the presentation of these algorithms to the case of SeaWiFS 
bands. For this sensor the MBR-OC4 is based on the 443, 490, 510, and 
555 nm bands. The BRDI algorithm also involves these four bands with 
BRDI defined as a maximum value selected from two individual BRDIs, 
[Rrs(443) – Rrs(555)] / Rrs(490) and [Rrs(490) – Rrs(555)] / Rrs(510). 
Thus, this BRDI formulation is hereafter referred to as MBRDI. For 
comparison, we also illustrate the best algorithm from the BR-PF cate
gory because, despite its inferior goodness-of-fit statistics for our 
development dataset, this algorithm is consistent with the current 
formulation of the NASA standard POC algorithm based on the single 
blue-to-green band ratio Rrs(443)/Rrs(555). 

Fig. 6 shows the best fit function of BR-PF algorithm for our dataset 
and the relationship between the algorithm-derived and measured POC 
including the values of statistical indicators. As seen, this algorithm 
tends to overestimate the measurements at very low POC and underes
timate at high POC (Fig. 6b). The power function with the best-fit co
efficients used in the current standard NASA algorithm also exhibits 
similar features, as shown for comparison (Fig. 6a). In addition, the 
Rrs(443)/Rrs(555) ratio corresponding to hypothetical ocean consisting 
of pure seawater only is indicated in Fig. 6a. This value was obtained 
from radiative transfer simulations assuming a solar zenith angle of 30o 

and a wind speed of 5 m s− 1 (Li et al., 2016). The BR-PF fitted line has 
the band ratio value of pure ocean at POC significantly above zero (~12 
mg m− 3). 

Fig. 7 provides similar results but for the MBR-OC4 algorithm which 
is clearly superior to BR-PF in terms of representing the dataset over the 
entire dynamic range of measurements. For the MBR-OC4 algorithm the 
values of S, A, and MdR are all very close to 1, and MdAPD is quite low, 
13.8% (Fig. 7b). The RMSD value of 41.7 mg m− 3 is also significantly 
reduced compared with 75.4 mg m− 3 for the BR-PF algorithm. Better 
performance of MBR-OC4 at high POC is primarily attributable to the 
fact that the function employed in the MBR-OC4 algorithm better cap
tures the behavior of high POC data than the BR-PF formula. With 
regards to very low POC less than about 20 mg m− 3, the MBR-OC4 al
gorithm tends to overestimate the measurements in our dataset. Also, 
this algorithm predicts POC of about 10 mg m− 3 when the MBR value 
corresponds to pure seawater condition. 

Fig. 8 depicts results for the MBRDI algorithm. In general, the sta
tistical indicators of MBRDI calculated for the entire dynamic range are 
similar to those of MBR-OC4 algorithm (Fig. 8b). A comparative analysis 
of statistical indicators for MBR-OC4 and MBRDI over different ranges of 
POC indicated, however, that the MBR-OC4 provided slightly better 

Table 3 
Statistical metrics used in comparative assessment of candidate algorithms.  

Symbol Description 

N Number of samples 
yi,xi Algorithm-derived y and measured x value for sample i of N 
R Pearson’s product moment correlation coefficient 

MdR Median ratio; median value of (yi / xi) 
MdB Median bias; median value of (yi − xi) 

MdAPD Median absolute percentage difference; median value of  
100 × [|(yi − xi)/ xi|] 

RMSD Root mean square deviation calculated as [(1/N) 
∑N

i=1(yi − xi)2]0.5  

S and A Exponent and multiplicative coefficients of power function, y = A xS,  
obtained from model-II linear regression of log(yi) on log(xi) (S is  
equivalent to the slope of linear function between log-transformed  
variables and A = 10I where I is the intercept of this linear function) 

MdAElog Median absolute error calculated as 10median[|log(yi)− log(xi)|] 

% wins Percentage wins in pairwise comparisons of yi and xi from multiple models  
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representation of data at high POC > 100 mg m− 3 and MBRDI provided a 
better representation of data at very low POC, especially <20 mg m− 3. 
The differences in the goodness-of-fit at intermediate values of POC are 
smaller and not so apparent. Compared with MBR-OC4, the MBRDI 
formulation has two notable features; it better represents the measure
ments at very low POC and predicts POC significantly closer to zero 
(~1.5 mg m− 3) when the explanatory variable of MBRDI corresponds to 
pure seawater condition. 

This analysis suggests that a hybrid algorithm which combines the 

MBR-OC4 and MBRDI formulas with the latter operating only in ultra
oligotrophic waters with very low POC is the best candidate approach 
for global POC algorithm. We recall that in this variant of MBRDI, the 
MBRDI values are selected from two BRDIs, [Rrs(443) – Rrs(555)] / 
Rrs(490) and [Rrs(490) – Rrs(555)] / Rrs(510). In our dataset the first 
BRDI is always selected when POC is less than about 25 mg m− 3. The 
second BRDI, which involves the 510 nm band, is selected for almost all 
remaining data. This indicates that for ultraoligotrophic waters, the 
MBRDI formula can be replaced with the BRDI formula involving 
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(b) The MBR-OC4 algorithm-derived POC vs. 
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ment dataset. A model-II regression line fit to 
the log-transformed data (black solid line) 
and the 1:1 line (thin grey line) are shown 
along with several statistical parameters. The 
data from different oceanic basins are 
depicted as indicated in panel (a).   

MBRDI 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

P
O

C
  

[m
g
 m

-3
]

10

100

1000

POC  [mg m-3]
10 100 1000M

B
R

D
I 

al
g

o
ri

th
m

-d
er

iv
ed

 P
O

C
  

[m
g
 m

-3
]

10

100

1000

P
u

re
 s

ea
w

a
te

r 

(a) (b) 

N = 139

R = 0.96

S = 0.97; A = 1.149

MdR = 0.99

RMSD = 42.64 mg m-3

MdB = –0.58 mg m-3

MdAPD = 14.68 %

Pacific
Atlantic
Indian
Southern
Arctic

Fig. 8. MBRDI (Maximum Band Ratio Dif
ference Index) algorithm for SeaWiFS based 
on the POC algorithm development dataset. 
(a) POC as a function of MBRDI. The best-fit 
quintic polynomial function for the algo
rithm development dataset (solid line) and 
approximate value of MBRDI for the case of 
pure seawater (dotted line) are shown. 
(b) The MBRDI algorithm-derived POC vs. 
measured POC for the algorithm develop
ment dataset. A model-II regression line fit to 
the log-transformed data (black solid line) 
and the 1:1 line (thin grey line) are shown 
along with several statistical parameters. The 
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[Rrs(443) – Rrs(555)] / Rrs(490). This approach eliminates a need to use 
BRDI involving the 510-nm band. 

Towards this end, we tested several candidate formulas of BRDI al
gorithm based on polynomial functions which relate POC to BRDI =
[Rrs(443) – Rrs(555)] / Rrs(490). The goal of this analysis was to estab
lish the BRDI algorithm for use within a range of very low POC less than 
about 25 mg m− 3, and most importantly below 20 mg m− 3. We tested the 
candidate BRDI formulas using different subsets of our data with POC 
extending beyond a desired range of BRDI applicability. For example, 
the curve fitting was done for POC < 50, < 60, < 70, and < 100 mg m− 3. 
This approach ensured that the fitted functions conform to general 
pattern of reasonably good number of data over reasonably large dy
namic range covering relatively low POC. In contrast, the curve fitting 
over a subset of data limited to only very low POC, such as <25 mg m− 3, 
would be at high risk of obtaining spurious results because the number 
of data within this narrow range is relatively small (N = 18) and these 
data exhibit significant scatter that can be attributed, at least partly, to 
increased relative error in measurements of very low POC. As a result of 
this analysis, the quintic polynomial function (Eq. 5) fitted to data 
within the range of POC < 70 mg m− 3 (N = 89) was selected as the final 
BRDI formula (Fig. 9a). The BRDI functions fitted for POC < 50 or < 100 
mg m− 3 were found to be similar to the selected BRDI formula within the 
middle section of the considered POC range, but they exhibited less 
desirable behavior at the high or low ends of the data range (not shown). 
Importantly, the selected BRDI algorithm produces the POC values in 
very good agreement with the MBRDI algorithm at low POC up to about 
40 mg m− 3 (Fig. 9b). In addition, similar to the MBRDI algorithm 
(Fig. 8a), the selected BRDI function shown in Fig. 9a attains the pure 
seawater condition at very low POC (~0.27 mg m− 3). This feature is 
advantageous compared with other algorithms which predict POC 
significantly above zero at pure seawater condition (~10 mg m− 3 or 
higher depending on the algorithm, see Supplementary Material). 
Owing to this feature the BRDI algorithm allows estimation of POC down 
to the lowest values of POC found in surface waters of ultraoligotrophic 
ocean (which are about 10 mg m− 3 or perhaps even below 10 mg m− 3) 
while the BRDI value does not yet reach the pure seawater condition. 

6. Formulation of final hybrid algorithms 

The approach to formulate a hybrid algorithm by merging the MBR- 
OCx and the BRDI formulas is the same for the six satellite sensors 
considered in this study. The coefficients of all final hybrid algorithms 
and the weighting approach used to create the hybrid algorithms are 

displayed in Table 4. Table S4 (Supplementary Material) provides the 
goodness-of-fit statistical parameters for all final hybrid algorithms 
presented in Table 4. 

The hybrid algorithm consists of the use of MBR-OC4 formula when 
POC > 25 mg m− 3 and the BRDI formula when POC < 15 mg m− 3. We 
note that for the algorithms that use MBR-OC4v or MBR-OC3 the general 
algorithmic scheme is analogous. A weighting approach is used in the 
transition range of 15 ≤ POC ≤ 25 mg m− 3 (Table 4). First, the initial 
weighting factors wMBR and wBRDI for the MBR-OC4 and BRDI formulas 
are determined. Note that whereas wMBR increases logarithmically from 
0 to 1 as POCMBR increases from 15 to 25 mg m− 3, wBRDI decreases from 1 
to 0 within this range. The BRDI weighting factor declines quite rapidly, 
for example to about 0.25 at POCBRDI of 20 mg m− 3, which is consistent 
with a desired dominant role of BRDI in the hybrid algorithm only at 
very low POC. The wMBR and wBRDI factors assume the value of 0.5 when 
POCMBR or POCBRDI is about 17.4 mg m− 3, which is also indicative of a 
dominant role of wMBR over most of the transition region. 

Because wMBR and wBRDI are calculated independently using POC 
estimated from two different algorithms, the sum of these initial 
weighting factors is generally not equal to 1. The final weighting factors, 
WMBR and WBRDI, are calculated to satisfy the condition that their sum is 
equal to 1. Using WMBR and WBRDI in the final step of the hybrid algo
rithm, POC is calculated as the weighted sum of POCMBR and POCBRDI. 
This weighting approach was designed to operate for any combination of 
the POCMBR and POCBRDI pair regardless of whether both or any of the 
two values are within or outside the transition region between 15 and 
25 mg m− 3, and regardless of whether the “outside” value(s) are above 
or below the boundaries of the transition region. 

As intended, POCBRDI begins to be lower than POCMBR for POC less 
than about 20 mg m− 3 where the BRDI contribution to the hybrid al
gorithm is dominant. For POC > 20 mg m− 3 the MBR-OC4 makes a 
dominant or total contribution to the hybrid algorithm, but both algo
rithms provide similar POC output up to 40–50 mg m− 3 although with a 
tendency for POCBRDI to be somewhat higher than POCMBR, especially 
between 20 and 30 mg m− 3 (not shown). In this range, however, the 
MBR-OC4 makes a dominant contribution to the hybrid algorithm. In 
addition, POCBRDI remains very close to POCMBR in the range from about 
30 mg m− 3 to 50 mg m− 3. As shown in Fig. 9a POCBRDI is, on average, 
about 45 mg m− 3 when BRDI = 1. In accordance with these features, we 
apply an initial condition to the hybrid algorithm which is POC =
POCMBR if BRDI <1 (Table 4). This condition implies that the hybrid 
algorithm proceeds with the calculation of weighting factors and the 
weighted estimate of POC only when BRDI ≥1. The main rationale for 
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Fig. 9. BRDI (Band Ratio Difference Index) 
algorithm for SeaWiFS based on the subset of 
data from the POC algorithm development 
dataset which encompasses the range of POC <
70 mg m− 3 (the number of subset data N = 89). 
(a) POC as a function of BRDI. The best-fit 
quintic polynomial function for the subset of 
algorithm development dataset (solid line) and 
approximate value of BRDI for the case of pure 
seawater (dotted line) are shown. In addition, 
the vertical dotted line at BRDI = 1 is shown to 
indicate the lower limit of the range of BRDI 
values that are used in the hybrid algorithm 
(see text in Section 6 for details). (b) The BRDI 
algorithm-derived POC vs. MBRDI algorithm- 
derived POC for the subset of algorithm 
development dataset. The 1:1 line (thin grey 
line) indicates a very good agreement between 
the two algorithms in the range of low POC 
values intended for application of BRDI algo
rithm. The data from different oceanic basins 
are depicted as indicated in panel (a).   
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Table 4 
Final hybrid algorithm formulations and parameter values based on the algorithm development dataset with original POC measurements (N = 139).  

Algorithm Reflectance band parameter a0 a1 a2 a3 a4 a5 

SeaWIFS hybrid algorithm       
MBR-OC4a MBR = max[Rrs(443, 490, 510)/Rrs(555)] 2.5037 − 2.1297 1.8727 − 0.9554   
BRDIb BRDI = [Rrs(443) – Rrs(555)] / Rrs(490) 1.5407 0.8586 − 0.0787 − 1.8571 1.5738 − 0.3839  

MODIS hybrid algorithmc       

MBR-OC3 MBR = max[Rrs(443, 488)/Rrs(547)] 2.4500 − 2.0920 1.8148 − 0.9726   
MBR-OC4vd MBR = max[Rrs(443, 488, 510v)/Rrs(547)] 2.5155 − 2.5893 2.8241 − 1.5640   

where Rrs(510v) = 0.5 Rrs(510A) + 0.5 Rrs(510B); Rrs(510A) = − 0.00008 + 1.085 Rrs(488) and Rrs(510B) = − 0.00041 + 1.104 Rrs(531) 
Rrs(510v) is used only when Rrs(510v)/Rrs(547) < 1.2, Rrs(510v) > Rrs(443), and Rrs(510v) > Rrs(488) 

BRDI BRDI = [Rrs(443) – Rrs(547)] / Rrs(488) 1.6876 0.0936 1.6170 − 3.9144 2.8003 − 0.6633  

VIIRS-SNPP hybrid algorithmc       

MBR-OC3 MBR = max[Rrs(443, 486)/Rrs(551)] 2.4484 − 1.9178 1.4910 − 0.7694   
MBR-OC4v MBR = max[Rrs(443, 486, 510v)/Rrs(551)] 2.5274 − 2.4977 2.6253 − 1.4109   

where Rrs(510v) = 0.63 Rrs(510A) + 0.37 Rrs(510B); Rrs(510A) = − 0.000070 + 1.096 Rrs(486) and Rrs(510B) = − 0.00094 + 1.221 Rrs(551) 
Rrs(510v) is used only when Rrs(510v)/Rrs(551) < 1.2, Rrs(510v) > Rrs(443), and Rrs(510v) > Rrs(486) 

BRDI BRDI = [Rrs(443) – Rrs(551)] / Rrs(486) 2.0748 − 2.3225 7.2895 − 10.1575 6.0496 − 1.3119  

VIIRS-JPSS-1 hybrid algorithmc       

MBR-OC3 MBR = max[Rrs(445, 489)/Rrs(556)] 2.4596 − 1.8083 1.3031 − 0.6740   
MBR-OC4v MBR = max[Rrs(445, 489, 510v)/Rrs(556)] 2.5213 − 2.2566 2.1640 − 1.1510   

where Rrs(510v) = 0.69 Rrs(510A) + 0.31 Rrs(510B); Rrs(510A) = − 0.0000004 + 1.068 Rrs(489) and Rrs(510B) = − 0.00130 + 1.291 Rrs(556) 
Rrs(510v) is used only when Rrs(510v)/Rrs(556) < 1.2, Rrs(510v) > Rrs(445), and Rrs(510v) > Rrs(489) 

BRDI BRDI = [Rrs(445) – Rrs(556)] / Rrs(489) 2.5909 − 4.9681 12.3141 − 14.4830 7.7375 − 1.5461  

MERIS and OLCI hybrid algorithms       
MBR-OC4 MBR = max[Rrs(442.5, 490, 510)/Rrs(560)] 2.5013 − 1.9388 1.5255 − 0.7507   
BRDI BRDI = [Rrs(442.5) – Rrs(560)] / Rrs(490) 1.5038 1.1116 − 0.6987 − 1.1111 1.1555 − 0.2960  

Final hybrid algorithm weighting between POCMBR and POCBRDI       

If BRDI <1 then POC = POCMBR       

If BRDI ≥1 then POC = POCMBRWMBR + POCBRDIWBRDI        

where WMBR = 0.5[wMBR + (1 − wBRDI)] and WBRDI = 1 − WMBR      

Calculation of weighting factors wMBRand wBRDI       

If POCMBR > 25 mg m− 3 then wMBR = 1 
If 15 ≤ POCMBR ≤ 25 mg m− 3 then wMBR = log[0.9 POCMBR – 12.5] 
If POCMBR < 15 mg m− 3 then wMBR = 0 
If POCBRDI > 25 mg m− 3 then wBRDI = 0 
If 15 ≤ POCBRDI ≤ 25 mg m− 3 then wBRDI = 1–log[0.9 POCBRDI – 12.5] 
If POCBRDI < 15 mg m− 3 then wBRDI = 1  

a MBR-based OC3 and OC4 algorithms: log(POC) = ao + a1 log(MBR) + a2 [log(MBR)]2 + a3 [log(MBR)]3. 
b BRDI algorithm: log(POC) = ao + a1 BRDI + a2 BRDI2 

+ a3 BRDI3 
+ a4 BRDI4 

+ a5 BRDI5. 
c One variant of hybrid algorithm consists of MBR-OC3 and BRDI and the other variant consists of MBR-OC4v and BRDI. 
d the letter “v” indicates use of a calculated virtual band in the algorithm. 

Fig. 10. (a) The SeaWiFS hybrid algorithm-derived POC vs. measured POC for the POC algorithm development dataset. A model-II regression line fit to the log- 
transformed data (black solid line) and the 1:1 line (thin grey line) are shown along with several statistical parameters. (b) A comparison of the SeaWiFS hybrid 
algorithm-derived POC and POC derived from the current standard algorithm used by NASA OBPG for the algorithm development dataset. The thin grey line is a 1:1 
line. The data from different oceanic basins are depicted as indicated in panel (a). 
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this initial condition is to avoid using the weighting approach for hy
pothetical (but rather unlikely) scenario when POCBRDI > 45 mg m− 3 

and POCMBR < 25 mg m− 3. 
Fig. 10a encapsulates the formulation of SeaWiFS-specific hybrid 

algorithm by comparing POC derived from the hybrid algorithm with 
measured POC for our entire development dataset. The statistical pa
rameters of this relationship indicate that overall the hybrid algorithm 
describes well the observations, for example S = 0.98, MdR = 0.99, 
MdAPD = 13.6%, and RMSD = 41.7 mg m− 3. The statistical parameters 
of the hybrid algorithm are similar or slightly better compared with the 
cases illustrated in Figs. 7 and 8 where the MBR-OC4 or the MBRDI al
gorithm alone were used over the entire dynamic range of POC. When 
compared with the current standard algorithm based on BR-PF formula, 
the new hybrid algorithm is expected to produce lower values at the low 
end (i.e., ultraoligotrophic waters) and higher values at the high end 
(e.g., highly eutrophic waters) of the POC range (Fig. 10b). These fea
tures are considered as main improvements over the current standard 
algorithm. Over a significant range of intermediate values of POC the 
new hybrid algorithm is, however, expected to produce similar results to 
the current standard algorithm. These results are consistent with the 
behavior of the best-fit functions of BR-PF, MBR-OC4, and BRDI in 
Figs. 6, 7, and 9. 

Table 4 provides essential information for the final POC algorithms 
for SeaWiFS as well as MODIS, VIIRS, MERIS, and OLCI satellite sensors. 
The MERIS and OLCI sensors have spectral bands in the blue and green 
regions which are centered at wavelengths similar to SeaWiFS, specif
ically 442.5, 490, 510, and 560 nm [note that in our algorithm devel
opment dataset Rrs(442.5) was calculated by averaging Rrs(442) and 
Rrs(443)]. Therefore, for MERIS and OLCI we formulated the sensor- 
specific hybrid algorithms that combine the component MBR-OC4 and 
BRDI algorithms in a similar fashion as for SeaWiFS. The statistical in
dicators of goodness-of-fit for these algorithms are similar to those dis
played in Fig. 10a for SeaWiFS (Table S4, Supplementary Material). 

The MODIS and VIIRS sensors lack a band centered at or near 510 
nm. For these sensors we formulated two variants of hybrid algorithms 
and both variants are shown in Table 4. The first variant is based on the 
use of three bands from the blue-green region which are available on 
these sensors, specifically 443, 488, and 547 nm for MODIS, 443, 486, 
and 551 nm for VIIRS-SNPP, and 445, 489, and 556 nm for VIIRS-JPSS- 
1. This variant of MODIS and VIIRS-specific hybrid algorithms combine 
the MBR and BRDI formulas in a similar fashion as SeaWiFS with the 

exception that MBR-OC3 formula is used instead of MBR-OC4. In the 
MBR-OC3 formulas the maximum band ratio is selected from two band 
ratios, i.e., Rrs(443)/Rrs(547) and Rrs(488)/Rrs(547) for MODIS, 
Rrs(443)/Rrs(551) and Rrs(486)/Rrs(551) for VIIRS-SNPP, and Rrs(445)/ 
Rrs(556) and Rrs(489)/Rrs(556) for VIIRS-JPSS-1. The goodness-of-fit 
statistics of hybrid algorithms involving MBR-OC3 are somewhat infe
rior compared with the SeaWiFS hybrid algorithm involving MBR-OC4 
(Table S4, Supplementary Material). This result is attributable to the 
algorithm predictions in the range of relatively high POC where the 
MBR-OC4 formula uses the third band ratio that includes 510 nm, i.e., 
Rrs(510)/Rrs(555) in the case of SeaWiFS. Specifically, the MBR-OC3 
tends to underestimate the POC measurements in our development 
dataset at the high end of POC range. This observation motivated a 
development of a second variant of MODIS and VIIRS-specific hybrid 
algorithms. 

In this second variant of MODIS and VIIRS algorithms the MBR-OC4v 
formula is used, in which Rrs(510v) is estimated from reflectances 
measured by MODIS and VIIRS at other bands. We note that the BRDI 
component of these hybrid algorithms is the same as in the first variant 
of hybrid algorithms. We here use “510v” to indicate that this is a 
“virtual” band centered at 510 nm rather than a band at which the 
measurement is actually made, and also “MBR-OC4v” to indicate the use 
of this virtual band in the MBR-OC4 algorithm. For MODIS Rrs(510v) is 
estimated from measurements of Rrs(488) and Rrs(531). This makes it 
possible to include the third band ratio, Rrs(510v)/Rrs(547), in the 
MODIS MBR-OC4v algorithm. For VIIRS-SNPP the estimation of 
Rrs(510v) uses the measurements of Rrs(486) and Rrs(551), and for 
VIIRS-JPSS-1 the measurements of Rrs(489) and Rrs(556) are used. These 
estimations of Rrs(510v) allow the formulation of VIIRS MBR-OC4v al
gorithms. Because the approach to formulate the MBR-OC4v algorithms 
is essentially the same for MODIS and VIIRS sensors except for differ
ences in center wavelengths of bands, we limit the relevant description 
to MODIS. 

Fig. 11a illustrates the MODIS-specific MBR-OC4 algorithm as fitted 
to our development dataset assuming hypothetically that MODIS is 
equipped with a 510-nm band. The data in Fig. 11a are color coded to 
distinguish the measured reflectance ratios selected as maximum band 
ratios that provide input to the MBR-OC4 formula. As seen, Rrs(510)/ 
Rrs(547) can be selected as the MBR value only when POC is relatively 
high (> 100 mg m− 3), which corresponds to the range of MBR values less 
than about 1.2. Note also that the MBR range between about 1 to 1.2 
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Fig. 11. (a) POC as a function of MBR 
(Maximum Band Ratio) for the POC algo
rithm development dataset. The three band 
ratios of Rrs(λ) considered in this analysis are 
indicated. The 443, 488, and 547 nm bands 
are available on the MODIS instrument, but 
the 510 nm band is not available. Different 
data symbols are used to indicate which band 
ratio has the maximum value for any given 
data point. The best-fit cubic polynomial 
function to the data is shown (solid line). 
Also, the best-fit function (dashed line) is 
shown for the same dataset but with 
Rrs(510)/Rrs(547) replaced with Rrs(510v)/ 
Rrs(547) where Rrs(510v), referred to as Rrs 
at the virtual band of 510 nm, is estimated 
from Rrs(488) and Rrs(531). The best-fit 
dashed line is virtually indistinguishable 
from the best-fit solid line. The vertical 

dotted line at MBR = 1.2 indicates the upper limit of the range of MBR values within which Rrs(510v) is used in the MODIS hybrid algorithm (see text in Section 6 for 
details). (b) Rrs(510) as a function of Rrs(488) or Rrs(531) for the subset of data from the POC algorithm development dataset which satisfies a condition MBR < 1.2. 
Two relationships which serve as a basis for estimation of Rrs(510v) are shown; one between Rrs(510) and Rrs(488) and the other between Rrs(510) and Rrs(531). The 
ordinary least squares regression rather than the robust regression method was used to determine the relationships for estimating Rrs(510v) because the use of equal 
weights was deemed preferable for this number and distribution of data points (differences between the two methods were nevertheless very small).   
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represents an overlap range where either Rrs(510)/Rrs(547) or Rrs(488)/ 
Rrs(547) is selected as the MBR value. These results indicate that a subset 
of our measurements satisfying the condition MBR < 1.2 is best suited to 
test the estimation of Rrs(510v) from Rrs measured at other wavelengths 
available on MODIS, specifically from Rrs(488) and Rrs(531). This subset 
of data includes 9 measurements from the Arctic Ocean, 2 measurements 
from the Southern Ocean, 2 measurements from the Pacific Ocean, and 1 
measurement from the Atlantic Ocean. 

Such estimation is supported in Fig. 11b which shows a very strong 
correlation (R = 0.99) between the measured Rrs(510) and Rrs(488) or 
Rrs(531). The linear functions obtained from a model-I regression are 
also shown and provide a means to estimate Rrs(510v). Although the 
agreement between the estimated Rrs(510v) and measured Rrs(510) is 
very good regardless of whether Rrs(488) or Rrs(531) is used, we have 
chosen to use an average estimate of Rrs(510v) based on the two linear 
regression functions shown in Fig. 11b. 

An important result shown in Fig. 11a is that the curve representing 
the MBR-OC4v formula involving the use of the estimated Rrs(510v) is 
essentially indistinguishable from the curve in which the MBR-OC4 
formula uses the actual measured Rrs(510). The agreement between 
the two curves, especially in the range of MBR < 1.2 within which 
Rrs(510v) is intended for use, reflects the good estimation of Rrs(510v) as 
illustrated in Fig. 11b. 

The best-fit coefficients of the MODIS-specific hybrid algorithm 
combining the MBR-OC4v and BRDI components are presented in 
Table 4 along with a description of formulas for estimating Rrs(510v) 
from Rrs(488) or Rrs(531). For operational use this MODIS hybrid al
gorithm is also subject to an initial condition which implies that 
Rrs(510v)/Rrs(547) is used in the MBR-OC4v formula only when the 
value of Rrs(510v)/Rrs(547) is less than 1.2 and is greater than the values 
of Rrs(443)/Rrs(547) and Rrs(488)/Rrs(547) (Table 4). Note that field 
data (Fig. 11a) demonstrate that Rrs(488)/Rrs(547) can be the highest 
band ratio below the threshold of 1.2, so this threshold does not act as an 
automatic or abrupt switch between the use of Rrs(510v)/Rrs(547) or 
Rrs(488)/Rrs(547) in the MBR-OC4v formula. It is also important to note 
that the statistical indicators of the goodness-of-fit of this MODIS hybrid 
algorithm for our development dataset (e.g., S = 0.97, MdR = 1.01, 
MdAPD = 14.5%, and RMSD = 44.9 mg m− 3) are very close to those 
displayed in Fig. 10a for the SeaWiFS hybrid algorithm (see also Table 

S4, Supplementary Material). This result indicates a high degree of 
consistency of the MODIS and SeaWiFS hybrid algorithms and supports 
the notion that the MODIS hybrid algorithm based on MBR-OC4v and 
BRDI is preferable over the other variant of the MODIS algorithm based 
on MBR-OC3 and BRDI (Table S4). We recall that the BRDI component is 
the same for these two variants of MODIS hybrid algorithms. 

A similar conclusion and results follow from analogous analysis of 
two variants of the VIIRS hybrid algorithms for both VIIRS-SNPP and 
VIIRS-JPSS-1 sensors. One notable distinction is the estimation of 
Rrs(510v) which for VIIRS sensors is somewhat degraded compared to 
MODIS. This is because the VIIRS bands used to estimate Rrs(510v) are 
generally further away from 510 nm compared to the MODIS case. As a 
result, the relationships for estimating Rrs(510v) are slightly weaker 
although the correlation coefficients for these relationships remain very 
high, for example R = 0.99 and 0.95 for estimation of Rrs(510v) from the 
VIIRS-SNPP bands of 486 nm and 551 nm, respectively. In addition to 
the best-fit coefficients of VIIRS algorithms, Table 4 also provides 
equations for the estimation of Rrs(510v) from the VIIRS measurements 
at the blue and green bands. These equations indicate a stronger 
contribution of the blue band than the green band in the estimation of 
Rrs(510v) which results from the spectral distance between 510 nm and 
the two other wavelengths. Like for MODIS, our analysis of the devel
opment dataset suggests that for the VIIRS sensors the variant of the 
hybrid algorithm combining MBR-OC4v and BRDI is preferable over the 
other variant combining MBR-OC3 and BRDI (Table S4, Supplementary 
Material). 

7. Example validation and application of POC algorithms with 
satellite imagery 

A thorough validation of proposed POC algorithms and their com
parison with several existing POC algorithms using independent field 
data as well as in situ-satellite matchup datasets warrants a separate 
study which is underway. Here we present example validation results for 
the proposed SeaWiFS and MODIS hybrid algorithms and comparison 
with the current standard algorithms used by NASA OBPG for generating 
the global POC product from these satellite sensors (Fig. 12). These 
comparisons are based on a matchup dataset of satellite-derived Rrs(λ) 
and field measurements of POC, which has been used by NASA OBPG for 

Fig. 12. A comparison of algorithm-derived POC (the vertical axis) with measured POC (the horizontal axis) for a matchup dataset of in situ and satellite obser
vations with (a) SeaWiFS and (b) MODIS-Aqua. (a) Validation of SeaWiFS-specific hybrid POC algorithm (black triangles) and current standard POC algorithm used 
by NASA OBPG for SeaWiFS observations (grey circles). (b) Same as (a) but for MODIS-Aqua. Model II regression lines fit to log-transformed data of the hybrid 
algorithm-derived POC vs. measured POC (black solid lines) and the standard algorithm-derived POC vs. measured POC (dashed grey lines) are shown. The thin grey 
solid line is a 1:1 line. Several statistical parameters are displayed for this comparative data analysis. 
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demonstrating the performance of standard POC algorithms with Sea
WiFS and MODIS-Aqua observations (https://oceancolor.gsfc.nasa.gov/ 
atbd/poc/). The validation dataset for SeaWiFS consists of 402 obser
vations, most of them (350) collected in the Atlantic along the east coast 
of the United States. The remaining observations were made at low to 
temperate latitudes in the Atlantic (22) and Pacific (29), and only one 
observation was made at high latitudes in the north polar Atlantic. In 
this dataset the surface values of POC obtained from field measurements 
range from about 20 to 1190 mg m− 3 but the probability distribution 
peaks near 200 mg m− 3. This indicates a significant shift towards higher 
values of POC compared to distributions for our algorithm development 
dataset and global satellite data (see Fig. 3). The MODIS-Aqua validation 
dataset consists of 210 observations, also with most observations (154) 
collected along the east coast of the United States. The remaining data 
come from high northern latitudes (8 in the Chukchi Sea and one in the 
north polar Atlantic) and low to temperate latitudes in the Atlantic (28), 
Pacific (15), as well as a few observations south of South Africa and 
Tasmania. The surface POC in this dataset ranges from about 21 to 1170 
mg m− 3 with a probability distribution peaking at about 200 mg m− 3, 
which is similar to the SeaWiFS validation dataset. 

Fig. 12 demonstrates that the statistical parameters of the relation
ship between the satellite-derived POC and measured POC are generally 
better for the hybrid algorithm than the standard algorithm for both the 
SeaWiFS and MODIS-Aqua matchup datasets. In particular, the param
eters S and A are much closer to 1 for the hybrid algorithms indicating 
that the best-fit regression functions for these matchup datasets are 
closer to the 1:1 line when the hybrid algorithm is used (black solid lines 
in Fig. 12) compared with the use of the standard algorithm (grey 
dashed lines). Although these matchup datasets include a relatively 
small proportion of data from low POC waters, these results point to 
potential improvements provided by the hybrid algorithms. Specifically, 
the SeaWiFS and MODIS-derived POC obtained with standard algo
rithms tend to be lower than the measured values within the range of 
high POC above a few hundred mg m− 3. This tendency for underesti
mation is not seen for the hybrid algorithms. Within the intermediate 
range of POC around 100 mg m− 3 both types of algorithms yield similar 

results. This result is consistent with the differences between the hybrid 
and standard algorithms for our algorithm development dataset as 
depicted in Fig. 10b. In addition, Fig. 12 shows that the use of hybrid 
algorithms with satellite data of Rrs(λ) tends to provide somewhat lower 
POC values than the standard algorithms at very low POC. This result is 
also consistent with the behavior of these algorithms for the develop
ment dataset (Figs. 6–9) and is expected to be an improvement associ
ated with the use of BRDI in the hybrid algorithm at very low POC. 

Example monthly composite images of POC obtained with the hybrid 
algorithm applied to SeaWiFS observations are illustrated in Fig. 13. The 
images of the difference between POC derived from the hybrid and 
current standard algorithms are also shown. Vast areas of subtropical 
ocean exhibit small positive differences, typically a few mg m− 3. Certain 
areas at tropical, subtropical, or temperate latitudes show some negative 
difference, for example the ultraoligotrophic waters within the central 
part of the South Pacific Gyre in the January 2005 image which is 
associated with the use of the BRDI component of the hybrid algorithm 
in this particular situation. Significant positive difference is typically 
observed in waters with high POC as clearly seen at northern latitudes in 
the July 2005 image or various coastal/shelf areas and upwelling re
gions along the western continental boundaries. Again, this is consistent 
with expectations based on differences in the algorithm behavior for the 
algorithm development dataset. 

Fig. 14a compares POC derived from hybrid algorithms using Sea
WiFS and MODIS-Aqua observations of the global ocean in the month of 
July 2005, and Fig. 14b shows similar comparison for MODIS-Aqua and 
VIIRS-SNPP for January 2017. The majority of data points in these plots 
are clustered along the 1:1 line indicating good agreement, on average, 
between the satellite retrievals of POC from different sensors. In addi
tion, the overall pattern of scattered points does not exhibit a bias over a 
wide dynamic range of derived values of POC. Although comparative 
analysis of POC derived from different satellite sensors requires special 
attention in further studies, the example results presented in Fig. 14 are 
promising indicators of consistency of long-term record of global POC 
product based on the proposed hybrid algorithms as applied to multiple 
satellite missions. 
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Fig. 13. (Left panels) Monthly composite images of POC in surface waters of the global ocean derived from the SeaWiFS-specific hybrid algorithm applied to 
SeaWiFS observations during two example months, January 2005 and July 2005. (Right panels) The corresponding global images of the difference between POC 
values derived from the hybrid algorithm and the current standard algorithm used by NASA OBPG. 
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8. Summary and future perspectives 

Chlorophyll-a concentration in water has been a cornerstone data 
product of optical remote sensing since the first space-based ocean color 
mission of Coastal Zone Color Scanner (CZCS) on Nimbus-7 satellite 
launched in 1978 (Hovis et al., 1980). The use of empirical Chla algo
rithms that are based on multi-spectral measurements of ocean reflec
tance from space span more than four decades (Gordon and Clark, 1980; 
Morel, 1980). Over the years multiple refinements of global empirical 
Chla algorithms have been formulated to meet the goals of the devel
opment of Chla climate data record from satellite ocean color missions 
(Hu et al., 2012; O’Reilly et al., 1998; O’Reilly et al., 2000; O’Reilly and 
Werdell, 2019). Although it is carbon, not chlorophyll-a, which is of 
more direct relevance to the ocean’s role in the Earth’s carbon cycle, the 
development of algorithms for estimating ocean carbon pools has a 
much shorter history than Chla. The first POC algorithm was proposed 
during early years of SeaWiFS ocean color mission (Stramski et al., 
1999) and, until now, essentially one version of an empirical POC al
gorithm based on the power function of the blue-green reflectance ratio 
(Stramski et al., 2008) has been used by NASA for routine de
terminations of global POC product from past and current satellite ocean 
color missions. In the present study we generated a new suite of global 
empirical POC algorithms for past and current satellite sensors to sup
port development of a long-term POC data record from multiple satellite 
missions. 

For this development we assembled a field dataset of concurrent POC 
and remote-sensing reflectance, Rrs(λ), measurements. Although the size 
of this development dataset is not very large (N = 139), the data were 
collected in all major ocean basins encompassing tropical, subtropical, 
and temperate latitudes as well as the northern and southern polar lat
itudes, which yielded a globally-representative probability distribution 
of POC with a broad range of values between about 10 and 1000 mg m− 3 

(Table 1, Fig. 3). When creating the development dataset, we also 
applied additional inclusion and exclusion criteria based on well- 
assured and documented consistency of measurement protocols as 
well as specific bio-optical and particle characteristics of seawater which 
are consistent with vast areas of open-ocean pelagic environments. To 
formulate the algorithms the dataset was subject to parametric regres
sion analysis. Overall we evaluated over seventy formulas for estimating 
POC from Rrs(λ) using seven distinctly different algorithmic categories. 

The key difference between these categories is associated with funda
mentally different definitions of independent (or explanatory) variable 
of Rrs(λ) in the algorithm formulas. 

As a result of goodness-of-fit analysis, we selected the best candidate 
POC algorithms for SeaWiFS, MODIS, VIIRS, MERIS, and OLCI satellite 
sensors (Table 4). These best candidates are referred to as hybrid algo
rithms and consist of two components, the MBR-OC4 cubic polynomial 
function and BRDI quintic polynomial function. The MBR-OC4 is the 
Maximum Band Ratio algorithm with four spectral bands, for example 
443, 490, 510, and 555 nm for SeaWiFS. For MODIS and VIIRS sensors 
the measurements at 510 nm are not available and we use Rrs(510v) that 
represents the estimates of reflectance at 510 nm from measurements at 
other bands available on these sensors (Fig. 11, Table 4). The BRDI is the 
Band Ratio Difference Index which involves three spectral bands, for 
example 443, 490, and 555 nm for SeaWiFS. The MBR-OC4 algorithm is 
used for POC > 25 mg m− 3 and the BRDI for POC < 15 mg m− 3. In the 
transition region the final POC value is calculated by applying a 
weighting approach to POC estimates obtained from MBR-OC4 and 
BRDI formulas. The main role of the BRDI component of the hybrid al
gorithm is to improve estimation of very low POC in ultraoligotrophic 
waters. The MBR-OC4 component aims at improving the POC estimates 
compared with the current standard algorithm over a broader range of 
POC values, but especially for relatively high POC above a few hundred 
mg m− 3. A preliminary analysis of field-satellite matchup datasets based 
on SeaWiFS and MODIS-Aqua observations showed improved perfor
mance of hybrid algorithms compared with current standard algorithms 
for both SeaWiFS and MODIS. We also demonstrated a reasonable 
consistency between POC derived from hybrid algorithms applied to 
SeaWiFS, MODIS-Aqua, and VIIRS-SNPP satellite imagery. 

As field determinations of POC play an important role in satellite 
algorithm development and validation, it is important to acknowledge 
that the common method based on POC determinations of particulate 
matter collected on glass-fiber filters is subject to various sources of 
uncertainties. A recently published protocol document provides a 
detailed discussion of various aspects of methodology for measuring 
POC in seawater, including recommendations for standardized practices 
to determine POC retainable on filters (IOCCG Protocol Series, 2021). 
The quantification of missing POC (mainly colloidal matter from sub
micrometer size range) with the standard filtration-based methodology 
remains, however, unresolved. As briefly discussed in Section 3.2, the 
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Fig. 14. (a) A comparison of POC derived from SeaWiFS-specific and MODIS-specific hybrid algorithms using global monthly composite data from SeaWiFS and 
MODIS-Aqua observations in July 2005. (b) A comparison of POC derived from MODIS-specific and VIIRS-specific hybrid algorithms using global monthly composite 
data from MODIS-Aqua and VIIRS-SNPP observations in January 2017. 
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colloidal POC can be important from the standpoint of both the total 
POC in seawater and the ocean optical properties, and hence the 
optically-based POC algorithms. In this study, we draw particular 
attention to two opposite biasing effects of the current POC measure
ment methodology; DOC-adsorption which results in positive bias of 
POC retained by GF/F filters and incomplete retention of all POC- 
bearing particles by GF/F filters which results in negative bias relative 
to total POC in seawater. Our algorithm development dataset includes 
POC determinations obtained with the JGOFS protocol established in 
the 1990s. This protocol involves no correction for DOC-adsorption, so it 
does not necessarily aim at optimizing the determination of the specific 
fraction of total POC which is retained by the GF/F filters. However, it is 
conceivable that the JGOFS protocol can provide POC data that more 
closely approximate the total POC in seawater compared to what would 
be obtained with an alternative protocol involving the correction for 
DOC-adsorption. This is because the opposite biasing effects of DOC- 
adsorption and the missing portion of total POC may be similar in 
relative magnitude and thus largely counteract each other. For studies of 
ocean biogeochemistry and optical remote sensing of POC, a measure of 
total POC in seawater is more relevant than a strictly operational mea
sure of POC fraction retained on GF/F filters. In particular, the remote- 
sensing reflectance is sensitive to all suspended particles including very 
small particles unaccounted for by the collection of particulate matter on 
GF/F filters. Thus, although the POC protocol without correction for 
DOC adsorption does not represent a perfect methodological approach 
for measuring the total POC in seawater, it does have potential advan
tages within the broader context of applications to ocean optical remote 
sensing and biogeochemistry. For these reasons it appears that the 
continued use of POC algorithms based on POC measurements without 
correction for DOC adsorption, as proposed here through a new suite of 
sensor-specific algorithms in Table 4, remains warranted. This is also 
consistent with the current standard algorithms for generating the 
global POC product. However, it is still highly desirable to improve the 
POC measurement methodology in the future, so it will more accurately 
represent the total POC in seawater, especially by including the small- 
sized particulate fraction that is missed by the current standard meth
odology. When such future improvements in methodology are devel
oped, the POC data product obtained from algorithms such as those in 
Table 4 will have an important historical benchmarking value. 

The POC measurement protocol involving the correction for DOC 
adsorption has the methodological benefit of standardizing the meth
odology that aims at optimizing the determination of POC which is 

operationally defined as a fraction of total POC retainable by GF/F fil
ters. Although this protocol has been increasingly used in recent years, 
the currently available data of concurrent measurements of Rrs(λ) and 
POC corrected for DOC adsorption are insufficient to create a globally- 
representative dataset for development of global POC algorithms. 
Nevertheless, we conducted the analysis in which the POC measure
ments from our algorithm development dataset were retroactively cor
rected for DOC adsorption using a single relationship between the 
correction and the volume of filtered sample as proposed by Novak et al. 
(2018). While we recognize that such retroactive correction is subject to 
larger uncertainty compared with more rigorous sample-specific cor
rections executed during the acquisition of measurements, the formu
lation of preliminary algorithms using our dataset with retroactively 
DOC-corrected values of POC may have significant value, for example 
as baseline information for future work on POC algorithms, especially as 
standardized POC protocols are broadly implemented (IOCCG Protocol 
Series, 2021) and potential improvements in POC measurement meth
odology are developed to better account for colloidal POC. 

Table 5 provides a summary of sensor-specific algorithm formulas 
obtained from our development dataset but with the use of DOC- 
corrected values of POC. The formulas shown in Table 5 were deter
mined in the same fashion as the algorithmic formulas for the original 
(i.e., DOC-uncorrected) values of POC shown in Table 4. The only dif
ference is that the main set of algorithms involving the original POC 
measurements (Table 4) is based on the entire algorithm development 
dataset (N = 139, Table 1) whereas the algorithmic formulas involving 
the DOC-corrected POC (Table 5) are based on a subset of these data for 
which sample filtration volumes were known (N = 107, see Section 3.2). 
Table S5 (Supplementary Material) provides the goodness-of-fit statis
tical parameters for all final hybrid algorithms presented in Table 5. 

The main purpose of the new suite of empirical POC algorithms 
presented in this study is to provide an improved tool for the develop
ment of a global multi-decadal data record of POC in the surface ocean 
by merging observations from multiple satellite ocean color missions. In 
particular, the suite of algorithms presented in Table 4 can be viewed as 
the potential next generation version of POC global algorithms that offer 
a capability to generate a long-term sensor-to-sensor consistent data 
record of POC that begins with the launch of SeaWiFS in 1997. The next 
research task is to conduct a thorough validation analysis of the pro
posed algorithms and other algorithms available in literature with in
dependent in situ and in situ-satellite matchup datasets. 

Table 5 
Final hybrid algorithm formulations and parameter values based on the algorithm development dataset with DOC-corrected POC (N = 107). The weighting approach 
for hybrid algorithms and the use of virtual band (510v) is the same as described for algorithms presented in Table 4.  

Algorithm Reflectance band parameter a0 a1 a2 a3 a4 a5 

SeaWIFS hybrid algorithm 
MBR-OC4 MBR = max[Rrs(443, 490, 510)/Rrs(555)] 2.4644 − 2.2866 2.1514 − 1.1324   
BRDI BRDI = [Rrs(443) – Rrs(555)] / Rrs(490) 3.4782 − 8.1773 15.4520 − 14.7159 6.7378 − 1.1942  

MODIS hybrid algorithm 
MBR-OC3 MBR = max[Rrs(443, 488)/Rrs(547)] 2.4090 − 2.2423 2.1074 − 1.1821   
MBR-OC4v MBR = max[Rrs(443, 488, 510v)/Rrs(547)] 2.4792 − 2.8271 3.3208 − 1.8951   
BRDI BRDI = [Rrs(443) – Rrs(547)] / Rrs(488) 2.9821 − 6.3986 13.3257 − 14.0553 7.0613 − 1.3653  

VIIRS-SNPP hybrid algorithm 
MBR-OC3 MBR = max[Rrs(443, 486)/Rrs(551)] 2.4066 − 2.0500 1.7259 − 0.9300   
MBR-OC4v MBR = max[Rrs(443, 486, 510v)/Rrs(551)] 2.4920 − 2.7393 3.1073 − 1.7160   
BRDI BRDI = [Rrs(443) – Rrs(551)] / Rrs(486) 3.8829 − 11.1351 23.0733 − 23.7939 11.7839 − 2.2599  

VIIRS-JPSS-1 hybrid algorithm 
MBR-OC3 MBR = max[Rrs(445, 489)/Rrs(556)] 2.4230 − 1.9173 1.4426 − 0.7664   
MBR-OC4v MBR = max[Rrs(445, 489, 510v)/Rrs(556)] 2.4890 − 2.4459 2.4857 − 1.3480   
BRDI BRDI = [Rrs(445) – Rrs(556)] / Rrs(489) 4.5702 − 14.2259 28.4159 − 28.0756 13.3419 − 2.4556  

MERIS and OLCI hybrid algorithms 
MBR-OC4 MBR = max[Rrs(442.5, 490, 510)/Rrs(560)] 2.4606 − 2.0561 1.7281 − 0.8859   
BRDI BRDI = [Rrs(442.5) – Rrs(560)] / Rrs(490) 3.8522 − 9.6080 17.5368 − 16.0773 7.1088 − 1.2191  
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Röttgers, R., Doerffer, R., 2007. Measurements of optical absorption by chromophoric 
dissolved organic matter using a point-source integrating-cavity absorption meter. 
Limnol. Oceanogr. Methods 5, 126–135. 

Rouse Jr., J.W., Haas, R.H., Schell, J.A., Deering, D.W., 1973. Monitoring the Vernal 
Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation, NASA/ 
GSFC Type II Report for Sept. 1972 – March 1973, Greenbelt, Maryland, 112 pp.  

Rouse Jr., J.W., Hass, R.H., Schell, J.A., Deering, D.W., 1974. Monitoring vegetation 
systems in the Great Plains with ERTS. In: Proceedings, Third Earth Resources 
Technology Satellite-1 Symposium, NASA SP-351, Greenbelt, Maryland, 
pp. 309–317. 

Seegers, B.N., Stumpf, R.P., Schaeffer, B.A., Loftin, K.A., Werdell, P.J., 2018. 
Performance metrics for the assessment of satellite data products: an ocean color 
case study. Opt. Express 26, 7404–7442. 

Sharp, J.H., 1973. Size classes of organic carbon in seawater. Limnol. Oceanogr. 18, 
441–447. 

Sheldon, R.W., 1972. Size separation of marine seston by membrane and glass fiber 
filters. Limnol. Oceanogr. 17, 494–498. 

Shiozaki, T., Ijichi, M., Fujiwara, A., Makabe, A., Nishino, S., Yoshikawa, C., Harada, N., 
2019. Factors regulating nitrification in the Arctic Ocean: Potential impact of sea ice 
reduction and ocean acidification. Glob. Biogeochem. Cycles 33, 1085–1099. 
https://doi.org/10.1029/2018GB006068. 

D. Stramski et al.                                                                                                                                                                                                                               

https://doi.org/10.1016/j.dsr2.2006.01.029
https://doi.org/10.1016/j.dsr2.2006.01.029
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0180
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0180
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0180
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0185
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0185
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0190
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0190
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0190
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0195
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0195
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0195
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0195
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0195
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0200
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0200
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0200
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0200
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0205
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0205
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0205
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0210
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0210
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0210
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0210
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0215
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0215
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0215
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0215
https://doi.org/10.25607/OBP-691
https://doi.org/10.25607/OBP-691
https://doi.org/10.25607/OBP-1646
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0230
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0230
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0230
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0235
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0235
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0240
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0240
https://doi.org/10.5194/os-12-561-2016
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0250
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0250
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0250
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0255
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0255
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0255
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0260
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0260
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0265
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0265
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0270
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0270
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0270
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0270
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0275
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0275
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0275
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0280
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0280
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0280
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0285
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0285
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0285
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0290
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0290
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0290
https://doi.org/10.3390/rs70708683
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0300
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0300
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0300
https://doi.org/10.1029/2002GL015948
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0310
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0310
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0310
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0315
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0315
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0320
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0320
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0320
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0320
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0325
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0325
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0330
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0330
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0335
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0335
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0335
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0340
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0340
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0340
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0340
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0345
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0345
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0350
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0350
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0350
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0350
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0350
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0355
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0355
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0355
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0360
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0360
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0360
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0360
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0375
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0375
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0375
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0375
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0375
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0375
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0375
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0375
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0365
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0365
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0370
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0370
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0370
https://doi.org/10.1029/2005JC003137
https://doi.org/10.1029/2005JC003137
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0385
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0385
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0385
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0390
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0390
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0390
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0390
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0395
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0395
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0395
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0400
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0400
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0405
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0405
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0405
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0410
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0410
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0410
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0415
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0415
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0415
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0415
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0420
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0420
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0420
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0425
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0425
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0430
http://refhub.elsevier.com/S0034-4257(21)00496-X/rf0430
https://doi.org/10.1029/2018GB006068


Remote Sensing of Environment 269 (2022) 112776

21

Smith Jr., W.O., Anderson, R.F., Moore, J.K., Codispoti, L.A., Morrison, J.M., 2000. The 
US Southern Ocean Joint Global Ocean Flux Study: an introduction to AESOPS. 
Deep-Sea Res. II 47, 3073–3093. 

Smith, S.L., Codispoti, L.A., Morrison, J.M., 1998. The 1994–1996 Arabian Sea 
Expedition: An integrated, interdisciplinary investigation of the response of the 
northwestern Indian Ocean to monsoonal forcing. Deep-Sea Res. II 45, 1905–1915. 

Sokal, R.R., Rohlf, F.J., 1995. Biometry: The Principles and Practice of Statistics in 
Biological Research, 3rd edition,. W. H. Freeman and Co., New York,. 880 pp.  

Son, Y.B., Gardner, W.D., Mishonov, A.V., Richardson, M.J., 2009. Multispectral remote- 
sensing algorithms for particulate organic carbon (POC): The Gulf of Mexico. Remote 
Sens. Environ. 113, 50–61. 

Stow, C.A., Jolliff, J., McGillicuddy, D.J., Doney, S.C., Allen, J.I., Friedrichs, M.A.M., 
Rose, K.A., Wallhead, P., 2009. Skill assessment for coupled biological/physical 
models of marine systems. J. Mar. Syst. 76, 4–15. 

Stramska, M., 2009. Particulate organic carbon in the global ocean derived SeaWiFS 
ocean color. Deep-Sea Res. I 56, 1459–1470. 
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SUPPLEMENTARY MATERIAL 

for the article entitled "Ocean color algorithms to estimate the concentration of particulate 
organic carbon in surface waters of the global ocean in support of a long-term data record from 

multiple satellite missions" by Dariusz Stramski, Ishan Joshi, and Rick A. Reynolds 
 
Measurements of Rrs(λ) 

This section of Supplementary Material is pertinent to Section 3.1 in the associated article. On 
the two cruises in the Pacific, one cruise in the Atlantic (ANTXXVI/4), and one cruise in the Arctic 
(MR17-05C), the underwater upwelling radiance measurements, Lu(λ, z=0.2 m), were made at a 
depth z of 0.2 m below the surface with a hyperspectral radiometer mounted on a surface float and 
operated at significant distance from the vessel (Table 2 in the associated article). These radiance 
measurements were extrapolated to just below the surface (i.e., z=0−) and then propagated across 
the water-air interface to determine Lw(λ). In parallel to near-surface radiance measurements, the 
irradiance Es(λ) was measured directly with a spectrally-matched sensor mounted on the ship’s 
mast. Time-series data of Lw(λ) and Es(λ) were acquired typically over a few minutes. These data 
were checked for quality and interpolated to a common time frame and spectral interval before the 
calculation of final average values of Rrs(λ) (Stramski et al., 2008). 

On the remaining cruises depth profiles of spectrally-matched Lu(λ, z) and Ed(λ, z) were 
measured within the ocean surface layer (Table 2 in the associated article). These measurements 
were made either with free-fall profiling radiometers (SPMR, C-OPS, or PRR-800) deployed at 
significant distance from the vessel or with a MER-2040 radiometer deployed from the side of the 
ship facing the direction of the sun. The methodology of processing the depth profile data involved 
several common steps which include: (i) data quality control (e.g., rejection of very different 
replicate casts or profiles, especially when acquired during variable sky conditions) and binning 
the data into depth intervals ranging from 0.1 to 1 m depending on the cruise (ii) determination of 
surface layer delimited by the depths of z1 and z2 (where z1 typically ranges between about 1 and 
5 m and z2 between 3 m and 20 m depending on environmental conditions under which the 
measurements were made) such that the vertical attenuation of Lu(λ) and Ed(λ) for any given light 
wavelength within the z1–z2 layer is well approximated by single values of the diffuse attenuation 
coefficients of Lu(λ) and Ed(λ), (iii) extrapolation of Lu(λ) and Ed(λ) from z1 to just below the 
surface (i.e., z=0−) using the values of the diffuse attenuation coefficients, and (iv) propagation of 
Lu(λ, z=0−) and Ed(λ, z=0−) across the water-air interface to determine the desired values of Lw(λ) 
and Es(λ). Between the cruises there were small inconsequential differences in the values of water-
to-air transmittance coefficients that were used to multiply Lu(λ, z=0−) and Ed(λ, z=0−) to obtain 
Lw(λ) and Es(λ). For radiance these coefficients varied between 0.54 and 0.543 and for irradiance 
between 1/0.957 and 1/0.97 (e.g., Antoine et al., 2013; Stramski et al., 2008). 

As described in the associated article (Section 3.1), the Rrs(λ) measurements obtained with 
multispectral radiometers were interpolated using Piecewise Cubic Hermite Interpolating 
Polynomial (PCHIP) to produce Rrs(λ) values at all wavelengths required for development of POC 
algorithms for different ocean color sensors. Before selecting the PCHIP method we compared its 
performance with two other interpolation methods, a linear interpolation of Rrs(λ) data and a linear 
interpolation of log-transformed Rrs(λ) data (e.g., O’Reilly and Werdell, 2019). In this analysis we 
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used the final hyperspectral data (1-nm interval) from the BIOSOPE, KM12-10, ANTXXVI/4, and 
MR17-05C cruises. These hyperspectral data were first spectrally subsampled at appropriate 
wavelengths to create multispectral datasets simulating measurements with the multispectral 
radiometers, i.e., SPMR, two MER-2040 instruments, C-OPS, and PRR-800 (see Table 2 in the 
paper). Then, these multispectral data were subject to the three interpolation methods and the 
interpolation results were compared with the measured hyperspectral data. Although the 
differences in the performance of the three interpolation methods were small, the PCHIP 
interpolated data were most consistent in terms of exhibiting a very good to excellent agreement 
with measured data (to within a few percent) within the blue-green spectral region for all 
multispectral scenarios. 
 
Comparative analysis of various candidate algorithms 

This section of Supplementary Material is pertinent to Section 4 in the associated article. Here 
we provide a summary of the results describing the comparative analysis of all candidate algorithm 
categories. This analysis is demonstrated for SeaWiFS bands but similar analysis was also made 
for other ocean color sensors. Table S1 provides the best-fit regression formula for each of the 
seven algorithm categories (i.e., CAT1 through CAT7 as described in Section 4 of the associated 
article) investigated in this study. These formulas were obtained from robust regression analysis 
applied to our algorithm development dataset consisting of 139 pairs of POC and Rrs(λ) 
measurements. For a given algorithm category, the formula presented in Table S1 provided better 
fit to the data than other candidate formulas which were examined for that category. For the CAT1 
(BR-PF) category the best-fit formula uses a single blue-to-green band ratio. For the CAT2 (MBR) 
category the best formula is based on a maximum value selected from three band ratios which 
involve four light wavelengths. This formula is referred to as MBR-OC4. For the CAT3 category, 
Table S1 includes two formulations; one is based solely on CI and the other is based on the 
combination of CI and MBR components operating in different ranges of POC. The CAT3 (CI) is 
analogous to the approach of Le et al. (2018) and involves the use of three light wavelengths. The 
CAT3 (CI+MBR) is analogous to the approach used in chlorophyll algorithm (Hu et al., 2012) and 
involves five wavelengths. Note that the MBR-OC4 formulas in CAT2 (MBR) and CAT3 
(CI+MBR) are the same. For the CAT4 (NDCI) category the best formula uses a maximum value 
selected from two individual NDCI variables. This formula involves three wavelengths. For CAT5 
(mNDCI) category the algorithm formula is based on the use of four wavelengths. For CAT6 
(BRDI) category the best formula uses a maximum value selected from two individual BRDI 
variables which altogether involve four wavelengths. Importantly, we note that this formula is 
referred to as MBRDI in the associated article. In Supplementary Material related to Tables S1, 
S2 and S3 as well as Fig S1we refer to this algorithm using a general symbol BRDI of CAT6 
category while recognizing that the best formula for the entire development dataset from this 
category is based on BRDI ≡ MBRDI as defined in Table S1. Finally, for the CAT7 (MLR) 
category the best formula was identified as a 2-band version of multiple linear regression. 

Figure S1 illustrates how the best regression formula from each category (except for CAT7 
Multiple Regression Analysis which is not shown) fits the algorithm development dataset. Note 
that for the CAT3 (CI+MBR) algorithm (Fig. S1d), the fitted curve is shown only for the CI 
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component of the algorithm which operates within the range of relatively low POC. The vertical 
dashed lines in Fig. S1 represent the values of explanatory variable involving Rrs(λ) which 
correspond to hypothetical ocean consisting of pure seawater only. These values were obtained 
from radiative transfer simulations assuming a solar zenith angle of 30o and a wind speed of 5 m 
s-1 (Li et al., 2016). It is instructive to compare the POC values predicted by each algorithm when 
its explanatory variable assumes the value corresponding to pure seawater condition. These POC 
values are: 11.7 mg m-3 for CAT1 (BR-PF), 10 mg m-3 for CAT2 (MBR), 23.2 mg m-3 for CAT3 
(CI), 14 mg m-3 for CAT3 (CI+MBR), 11.9 mg m-3 for CAT4 (NDCI), 11.7 mg m-3 for CAT5 
(mNDCI), and 1.5 mg m-3 for CAT6 (BRDI). This comparison shows that all algorithms except 
CAT6 (BRDI) predict POC of about 10 mg m-3 or higher for pure seawater condition. The CAT6 
(BRDI) algorithm makes a prediction that is significantly closer to POC = 0, which results from 
greater curvature of this algorithm at very low POC compared to other algorithms. The lowest 
POC in our dataset is about 12 mg m-3 and was measured in ultraoligotrophic waters within the 
South Pacific subtropical gyre. These waters are among the clearest oceanic waters (Morel et al., 
2007), so the POC values of about 10 mg m-3 are probably close to the minimum POC that can be 
encountered in surface ocean waters. While our algorithms are not intended for application outside 
the range of our development dataset, the curvature of BRDI algorithm at very low POC is 
advantageous compared with other algorithms. This is because it allows estimation of POC down 
to the lowest values of POC found in surface waters of ultraoligotrophic ocean (~10 mg m-3 or 
even below 10 mg m-3) while the BRDI value does not yet reach the pure seawater condition. 

Table S2 provides several statistical parameters (see Table 3 in the associated article) which 
characterize the goodness-of-fit of each algorithm formula from Table S1 for our algorithm 
development dataset. The selected results of pair-wise comparison between the algorithms are also 
included. We recall that the algorithm formulas in Table S1 were obtained from the robust 
regression method but, for comparison purposes, similar results were also obtained with the 
ordinary least squares (OLS) regression method (not shown). For all algorithms except CAT7 
(MLR) the differences between the robust regression and OLS-based statistical parameters were 
generally very small or indiscernible. This is indicative that our dataset does not include strong 
“outliers”. 

The comparison of statistics in Table S2 across different algorithms indicates that CAT3 (CI) 
and CAT7 (MLR) are clearly inferior compared to other algorithms. The CAT1 (BR-PF) is also 
inferior with significantly higher RMSD. For the remaining five algorithms the statistical 
parameters are typically similar. A closer inspection of all statistical results in Table S2 suggests 
that CAT2 (MBR) with its overall comparatively good statistics and the best pair-wise comparison 
results against other algorithms is a suitable candidate for consideration in formulation of final 
algorithms. Table S2 also shows that CAT6 (BRDI), which was demonstrated to have the largest 
curvature at very low POC (Fig. S1), has comparable statistical parameters to other potential 
candidate algorithms for the whole range of POC within our dataset. 

Table S3 compares the statistical parameters of five best candidate algorithms (as identified in 
Table S2) for two ranges of POC, > 25 mg m-3 and < 20 mg m-3. Note that this comparison is for 
the algorithm formulas (shown in Table S1) which were fit to the entire dataset, and not tuned 
specifically to these POC ranges. Because CAT1 (BR-PF), CAT3 (CI) and CAT7 (MLR) showed 
clearly inferior performance (Table S2), these algorithms are not included in Table S3. 
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There are two main results coming from Table S3. First, CAT2 (MBR) has generally the best 
statistical parameters over the range of POC > 25 mg m-3. This is the case even though the 
differences compared with other candidate algorithms are mostly small. This range of POC covers 
most situations in the ocean with the exception of ultraoligotrophic waters, and includes 121 out 
of the total of 139 data points in our dataset. We also made similar comparisons for other POC 
ranges, such as 50 – 100 mg m-3 and 100 – 250 mg m-3 which include reasonably large number of 
data points in our dataset (45 and 28, respectively) as well as the range of POC > 250 mg m-3 with 
a smaller number of data (10). For these ranges, the suite of the goodness-of-fit statistical 
parameters indicated that CAT2 (MBR) also provided better fit to the data than other candidate 
algorithms. These results support the notion that CAT2 (MBR) is a good choice for formulation 
of final algorithms and that the MBR-OC4 formula is suitable for predicting POC over a very 
broad range of POC. 

The second key result from Table S3 addresses the range of very low POC < 20 mg m-3. The 
CAT2 (MBR) algorithm tends to overestimate very low POC in our dataset, so it is desirable to 
identify another candidate algorithm for very low POC. Table S3 shows that in this range the 
CAT6 (BRDI) algorithm has overall the best statistical parameters and pair-wise comparison 
results although admittedly the number of data available in this range is small (N = 9). In addition, 
as discussed above, the CAT6 (BRDI) algorithm provides an advantage at very low POC owing 
to its greater curvature compared with other candidate algorithms. It is also noteworthy that 
compared to other potential candidates for use at very low POC, especially CAT4 (NDCI) and 
CAT5 (mNDCI) (see also the behavior of these algorithms at very low POC in Fig. S1), the values 
of BRDI exhibit a larger dynamic range than the values of NDCI or mNDCI within the range of 
lowest POC found in ultraoligotrophic waters. For example, as POC decreases from 20 to 10 mg 
m-3, the value of BRDI changes by about 15%, the NDCI by 8%, and the mNDCI by 9%. This 
result suggests that the CAT6 (BRDI) formulation has better resolving power at these very low 
levels of POC. The results in Table S3 along with the greater curvature and dynamic range of 
CAT6 (BRDI) function at very low POC support the notion that this algorithm is a good choice 
for consideration in formulation of final algorithms to provide predictions of POC in the range of 
very low levels found in ultraoligotrophic waters. Thus, CAT2 (MBR) and CAT6 (BRDI) were 
selected for further analysis and formulation of final hybrid algorithms as described in Section 5 
of the associated article. 
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Table S1. The best-fit regression functions for different algorithm categories which were determined by application of robust regression 
method to our algorithm development dataset (N = 139). All regression functions were fitted to all data from the development dataset 
except for the CI algorithms. The CAT3 (CI) algorithm consist of two functions which were fitted to subsets of our development dataset 
within the two ranges of CI as indicated in the table (N = 106 for CI < –0.0005 and N = 33 for CI ≥ –0.0005). The CI component of the 
CAT3 (CI+MBR) algorithm was fitted to subset of data with POC < 70 mg m-3 (N = 89). 

Category Algorithm Formula of regression function a0 a1 a2 a3 a4 a5 

CAT1 BR-PF 
log(POC) = a0 + a1 log(X)  
where X = Rrs(443)

Rrs(555)
 

2.3314 –1.0549 –– –– ––       –– 

CAT2 MBR 
log(POC) = a0 + a1 [log(X)] + a2 [log(X)]2 + a3 [log(X)]3 
where X ≡ MBR = max �Rrs(443)

Rrs(555)
, Rrs(490)

Rrs(555)
, Rrs(510)

Rrs(555)
� 

2.5037 –2.1297 1.8727 –0.9554 –– –– 

CAT3 
 

CI 
log(POC) = a0 + a1 X   for   CI < –0.0005 
log(POC) = a0 + a1 X   for   CI ≥ –0.0005 where X ≡ CI = 
Rrs(555) – �Rrs(490) + �555-490

670-490
�  (Rrs(670) – Rrs(490))� 

2.0516 
2.2007 

208.5610 
274.9562 

–– 
–– 

–– 
–– 

–– 
–– 

–– 
–– 

CI+MBR 

For POCMBR < 50 mg m-3 
log(POCCI) = a0 + a1 X   where X ≡ CI = Rrs(555) –
�Rrs(443) + �555-443

670-443
�  (Rrs(670) – Rrs(443))� 

 
For POCMBR > 70 mg m-3 
log(POCMBR) = a0 + a1 [log(X)] + a2 [log(X)]2 + a3 [log(X)]3 ] 
where X ≡ MBR = max �Rrs(443)

Rrs(555)
, Rrs(490)

Rrs(555)
, Rrs(510)

Rrs(555)
� 

 
The CI and MBR algorithms are merged in the range 
50 ≤ POCMBR ≤ 70 mg m-3 using a weighting approach* 

1.8732 
 
 
 
 
 

2.5037 

90.0432 
 
 
 
 
 

–2.1297 

–– 
 
 
 
 
 

1.8727 

–– 
 
 
 
 
 

–0.9554 

–– 
 
 
 
 
 

–– 

–– 
 
 
 
 
 

–– 
 

CAT4 NDCI 
log(POC) = a0 + a1 X + a2 X2 + a3 X3 + a4 X4 + a5 X5 
where X ≡ NDCI= max �Rrs(490) – Rrs(555) 

Rrs(490) + Rrs(555)
, Rrs(510) – Rrs(555) 

Rrs(510) + Rrs(555)
� 

2.5281 –1.7279 –0.0503 –2.2132 14.0994 –16.1412 

CAT5 mNDCI 
log(POC) = a0 + a1 X + a2 X2 + a3 X3 + a4 X4 + a5 X5 
where X ≡ mNDCI=Rrs(555) – max[Rrs(443), Rrs(490), Rrs(510)] 

Rrs(555) + max[Rrs(443), Rrs(490), Rrs(510)]
 

2.5169 1.7134 0.7229 2.4062 7.2708 6.1462 

CAT6 BRDI 
log(POC) = a0 + a1 X + a2 X2 + a3 X3 + a4 X4 + a5 X5 
where X ≡ BRDI = max �Rrs(443) – Rrs(555) 

Rrs(490) 
, Rrs(490) – Rrs(555) 

Rrs(510) 
� 

2.5037 –0.8498 –0.1692 –0.2269 0.0504 –0.0536 

CAT7 MLR log(POC) = a0 + a1 Rrs(490) + a2 Rrs(555) 1.8486 –140.5413 361.5335 –– –– –– 
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* Weighting approach: 
POC = POCMBR WMBR + POCCI WCI   where WMBR = 0.5[wMBR + (1 − wCI)] and WCI = 1 − WMBR 
Calculation of weighting factors wMBR and wCI 
wMBR = 1 for POCMBR > 70 mg m-3 
wMBR = (POCMBR–50)/(70–50)  for 50 ≤ POCMBR ≤ 70 mg m-3 
wMBR = 0 for POCMBR < 50 mg m-3 
wCI = 0 for POCCI > 70 mg m-3 
wCI = (POCCI–70)/(50–70)  for 50 ≤ POCCI ≤ 70 mg m-3 
wCI = 1 for POCCI < 50 mg m-3 

 

 

Fig. S1. The best-fit regression functions for different algorithm categories (solid lines, the 
formulas shown in Table S1) and all data comprising our algorithm development dataset. Data 
from different ocean basins are depicted using different symbols as indicated in panel (a). In panel 
(d) only the CI component of the CAT3 (CI+MBR) algorithm is shown for the range of POC < 70 
mg m-3. In each panel an approximate value of explanatory variable (horizontal axis) for the case 
of pure seawater is also shown as dotted line. 
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Table S2. The goodness-of-fit statistical parameters and selected results of pair-wise comparisons 
for best-fit regression functions from different algorithm categories shown in Table S1. The 
statistical parameters are explained in Table 3 in the associated article. 

Statistical parameter 
CAT1 CAT2 CAT3 CAT4 CAT5 CAT6 CAT7 

BR-PF MBR CI CI+MBR NDCI mNDCI BRDI MLR 

R 0.95 0.97 0.93 0.96 0.97 0.97 0.96 0.89 

S 0.95 0.98 0.93 0.96 0.98 0.98 0.97 1.08 

A 1.23 1.09 1.32 1.20 1.10 1.10 1.15 0.74 

MdR 0.99 0.99 1.01 1.00 0.99 1.00 0.99 1.03 

MdB (mg m-3) –0.24 –0.19 0.59 –0.14 –0.39 –0.10 –0.58 0.85 

MdAPD (%) 16.11 13.85 20.55 15.65 14.66 14.84 14.68 19.74 

RMSD (mg m-3) 75.45 41.71 91.07 42.84 40.52 40.76 42.64 273.89 

MdAElog 1.19 1.15 1.23 1.18 1.17 1.16 1.16 1.20 

% wins of MBR 64 –– 85 58 51 51 51 60 

% wins of BRDI 56 48 86 53 49 50 –– 61 

 
Table S3. The selected goodness-of-fit statistical parameters and results of pair-wise 
comparisons for best-fit regression functions from five algorithm categories (shown in Table S1) 
for two ranges of POC, > 25 mg m-3 and < 20 mg m-3. 

Statistical parameter 
CAT2 CAT3 CAT4 CAT5 CAT6 

MBR CI+MBR NDCI mNDCI BRDI 

 POC > 25 mg m-3 (N = 121) 

MdR 0.98 0.98 0.98 0.97 0.98 

MdB (mg m-3) –1.20 –1.29 –2.28 –1.98 –1.77 

MdAPD (%) 13.37 15.33 14.50 13.42 14.64 

RMSD (mg m-3) 41.65 41.70 42.47 41.70 42.54 

MdAElog 1.15 1.17 1.16 1.15 1.17 

% wins of MBR –– 52 53 49 51 

 POC < 20 mg m-3 (N = 9) 

MdR 1.08 1.13 1.10 1.08 1.06 

MdB (mg m-3) 1.19 1.86 1.43 1.20 0.99 

MdAPD (%) 9.19 13.02 9.67 9.74 7.55 

RMSD (mg m-3) 0.86 0.84 0.85 0.84 0.94 

MdAElog 1.10 1.13 1.10 1.11 1.09 

% wins of BRDI 67 57 67 67 –– 
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Statistical parameters of final hybrid algorithms 

Table S4 is pertinent to Section 6 in the associated article and provides the goodness-of-fit 
statistical parameters for all final hybrid algorithm formulations which are shown in Table 4 in the 
associated article. These results represent the entire algorithm development dataset with original 
POC measurements (N = 139). 

Table S5 is pertinent to Section 8 in the associated article and provides the goodness-of-fit 
statistical parameters for all final hybrid algorithm formulations which are shown in Table 5 in the 
associated article. These results represent the dataset with POC measurements corrected for DOC 
adsorption (N = 107). 

As explained in the associated article, it is important to recall here that the BRDI component 
of the final hybrid algorithms is not the same as the best formula selected from CAT6 (BRDI) 
which is presented in Table S1. While the CAT6 (BRDI) formula in Table S1 represents the best 
fit to the entire algorithm development dataset using the maximum value of two individual BRDI 
variables, the BRDI algorithm involved as a component of the final hybrid algorithm aims at 
estimation of very low POC values and was obtained by fitting one individual BRDI variable to 
data with POC < 70 mg m-3. This BRDI variable in the final hybrid algorithms involves three 
wavelengths, for example 443, 490 and 555 nm for SeaWiFS sensor. 
 
Table S4. The goodness-of-fit statistical parameters for final hybrid algorithms for different ocean 
color sensors which are based on the algorithm development dataset (N = 139). These final 
algorithms are described in Table 4 in the associated article. The statistical parameters are 
explained in Table 3 in the associated article. 

Sensor Hybrid algorithm R S A MdR MdB 
(mg m-3) 

MdAPD 
(%) 

RMSD 
(mg m-3) MdAElog 

SeaWiFS BRDI+MBR-OC4 0.97 0.98 1.08 0.99 –0.32 13.65 41.71 1.15 

MODIS 
BRDI+MBR-OC3 0.96 0.97 1.12 1.00 0.43 15.05 51.57 1.17 

BRDI+MBR-OC4 0.96 0.97 1.11 1.01 0.30 14.55 44.94 1.16 

VIIRS-SNPP 
BRDI+MBR-OC3 0.96 0.97 1.11 0.99 –0.34 15.53 52.94 1.18 

BRDI+MBR-OC4 0.96 0.98 1.10 0.99 –0.13 14.31 45.86 1.16 

VIIRS-JPSS-1 
BRDI+MBR-OC3 0.96 0.98 1.09 1.00 –0.33 14.75 54.54 1.17 

BRDI+MBR-OC4 0.97 0.98 1.10 0.99 –0.27 13.96 45.42 1.16 

MERIS/OLCI BRDI+MBR-OC4 0.97 0.98 1.07 1.00 0.04 13.99 43.22 1.15 
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Table S5. The goodness-of-fit statistical parameters for final hybrid algorithms for different ocean 
color sensors which are based on the algorithm development dataset with POC measurements 
corrected for DOC adsorption (N = 107). These final algorithms are described in Table 5 in the 
associated article.  

Sensor Hybrid algorithm R S A MdR MdB 
(mg m-3) 

MdAPD 
(%) 

RMSD 
(mg m-3) MdAElog 

SeaWiFS BRDI+MBR-OC4 0.96 0.98 1.08 1.01 0.25 17.02 48.98 1.19 

MODIS 
BRDI+MBR-OC3 0.96 0.97 1.13 1.02 0.24 18.22 60.01 1.21 

BRDI+MBR-OC4 0.96 0.97 1.09 1.02 0.41 18.56 51.53 1.21 

VIIRS-SNPP 
BRDI+MBR-OC3 0.96 0.97 1.11 1.01 0.26 18.26 62.03 1.22 

BRDI+MBR-OC4 0.96 0.97 1.11 1.01 0.35 19.01 51.54 1.20 

VIIRS-JPSS-1 
BRDI+MBR-OC3 0.96 0.98 1.08 1.01 0.13 18.74 63.61 1.20 

BRDI+MBR-OC4 0.96 0.98 1.09 1.01 0.30 18.13 51.77 1.20 

MERIS/OLCI BRDI+MBR-OC4 0.96 0.98 1.08 1.01 0.31 16.98 49.54 1.18 
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