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A B S T R A C T   

Following more than two decades of research and developments made possible through various proof-of-concept 
hyperspectral remote sensing missions, it has been anticipated that hyperspectral imaging would enhance the 
accuracy of remotely sensed in-water products. This study investigates such expected improvements and dem
onstrates the utility of hyperspectral radiometric measurements for the retrieval of near-surface phytoplankton 
properties1, i.e., phytoplankton absorption spectra (aph) and biomass evaluated through examining the con
centration of chlorophyll-a (Chla). Using hyperspectral data (409–800 nm at ~5 nm resolution) and a class of 
neural networks known as Mixture Density Networks (MDN) (Pahlevan et al., 2020), we show that the median 
error in aph retrievals is reduced two-to-three times (N = 722) compared to that from heritage ocean color al
gorithms. The median error associated with our aph retrieval across all the visible bands varies between 20 and 
30%. Similarly, Chla retrievals exhibit significant improvements (i.e., more than two times; N = 1902), with 
respect to existing algorithms that rely on select spectral bands. Using an independent matchup dataset acquired 
near-concurrently with the acquisition of the Hyperspectral Imager for the Coastal Ocean (HICO) images, the 
models are found to perform well, but at reduced levels due to uncertainties in the atmospheric correction. The 
mapped spatial distribution of Chla maps and aph spectra for selected HICO swaths further solidify MDNs as 
promising machine-learning models that have the potential to generate highly accurate aquatic remote sensing 
products in inland and coastal waters. For aph retrieval to improve further, two immediate research avenues are 
recommended: a) the network architecture requires additional optimization to enable a simultaneous retrieval of 
multiple in-water parameters (e.g., aph, Chla, absorption by colored dissolved organic matter), and b) the training 
dataset should be extended to enhance model generalizability. This feasibility analysis using MDNs provides 
strong evidence that high-quality, global hyperspectral data will open new pathways toward a better under
standing of biodiversity in aquatic ecosystems.   

1. Introduction 

Phytoplankton are primary producers in aquatic environments, 
providing a food source for other organisms, such as zooplankton (Fal
kowski et al., 2003). Their distribution in space and time as well as their 
composition and community structure serve as indicators for measuring 
the biodiversity and health of aquatic ecosystems. Understanding 

phytoplankton dynamics elucidates how aquatic ecosystems respond to 
climate variability (e.g., extended periods of dry and/or wet seasons) or 
to landcover and/or landuse changes (Sinha et al., 2017). Of prime 
concern in inland (e.g., lakes, rivers, reservoirs, especially water sup
plies) and coastal (e.g., estuaries, bays) waters is the presence of harmful 
algal blooms (HABs) triggered typically by rising temperatures and 
enhanced nutrient levels (Anderson, 2004; Brooks et al., 2016). 
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Quantifying phytoplankton biomass, their community composition and 
cell-size distribution is critical in documenting the onset, evolution, and 
dissipation of HABs (Schofield et al., 1999) and their associated public 
health and ecosystem impacts. 

Aquatic remote sensing has long proven an efficient means for 
detecting HABs and addressing phytoplankton biodiversity (IOCCG, 
2014). While HAB detection has primarily been based on examining 
band-arithmetic indices (Bresciani et al., 2011; Gower et al., 2008; 
Tomlinson et al., 2004), identifying phytoplankton community structure 
in the open ocean has relied upon phytoplankton biomass as inferred 
through near-surface concentrations of chlorophyll-a (Chla), the pri
mary pigment in all phytoplankton types and/or species (Alvain et al., 
2005; Brewin et al., 2011; Uitz et al., 2010; Uitz et al., 2015). A complete 
characterization of phytoplankton biodiversity, however, requires high- 
fidelity retrievals of phytoplankton absorption coefficients (aph) (Brewin 
et al., 2011; Bricaud et al., 2007; Hoepffner and Sathyendranath, 1993; 
Uitz et al., 2015) that fall under a broader suite of products termed the 
Inherent Optical Properties (IOPs). For a full attribution of phyto
plankton community structure via aph, numerous studies have suggested 
that a fairly fine spectral sampling is necessary to ensure subtle spectral 
features are captured (Roelke et al., 1999). Assuming remotely sensed 
observations over inland and coastal waters are accurately compensated 
for the atmospheric effects (Frouin et al., 2019), the remaining hurdle is 
to robustly retrieve aph(400 < λ < 700 nm) in areas where the absorption 
budget is dominated by non-algal particles (anap) and/or colored dis
solved organic matter (acdom) (Bukata et al., 1995; Feng et al., 2005; 
IOCCG, 2000, 2006; Strömbeck and Pierson, 2001). Further, estimating 
Chla from hyperspectral remote sensing across a wide array of trophic 
conditions (e.g., 0.1 < Chla < 940 mg m− 3; (Eleveld et al., 2017)) re
mains a daunting task and no single functional algorithm has been 
offered to-date (Kutser, 2004; Neil et al., 2019; Spyrakos et al., 2018; 
Tilstone et al., 2017). 

Recently, Pahlevan et al. (2020) demonstrated the utility of Mixture 
Density Networks (MDN) in the context of Chla retrieval for Sentinel-2 
and Sentinel-3 multispectral observations. The algorithm harnesses all 
available spectral bands and, through training, automatically learns 
most suitable band combinations for various water types. In this study, 
we extend this algorithm to the inversion problem of hyperspectral 
aph(λ) (λ is dropped hereafter) and Chla from hyperspectral data using 
two separate sets of in situ data (Sections 3 and 4). Following a rigorous 
evaluation of model performances (Section 5), the developed models are 
applied to atmospherically corrected images of the Hyperspectral 
Imager for Coastal Ocean (HICO) to assess image-derived aph spectra and 
Chla maps in highly eutrophic and turbid waters. A list of critical no
tations and acronyms used throughout this research is provided in 
Table 1. 

2. Background 

2.1. Phytoplankton absorption (aph) 

A thorough review of the existing IOP algorithms has been provided 
in Werdell et al. (2018). For completeness, a brief overview of funda
mentals of bio-optical inversion methods is presented. In general, 
radiometric quantities like Rrs, defined as the ratio of water-leaving 
radiance to the total downwelling irradiance just above the water 
(Mobley, 1999), is assumed to be a function of specific IOPs (e.g., 
spectral shapes of absorption and backscattering, volume scattering 
function) and concentrations of water constituents like Chla, Suspended 
Particulate Matter (SPM), and phycocyanin (PC), i.e., Rrs = F [IOP,Chla, 
PC,SPM] (Mobley, 1994). This function (F) is unique as each permuta
tion of IOPs and concentrations yields a single Rrs spectrum. Given a 
satellite-derived Rrs spectrum, the goal in bio-optical retrieval schemes is 
to approximate an inverse function (F− 1), which is not unique as a single 
Rrs spectrum may correspond to varied combinations of IOPs and con
centrations (Defoin-Platel and Chami, 2007; Sydor et al., 2004; Yang 
et al., 2011). Identifying a solution is more complex when spectral in
formation is available only for a limited number of bands. Further, F− 1 is 
commonly not an exact function, that is, approximations and constant 
factors limit the uniqueness of the solution. 

Different schemes have been proposed for the solution of the inverse 
problem of IOPs or the associated constituent concentrations from Rrs. 
The solution methods fall into three categories: a) semi-analytical, b) 
look-up-table (LUT), and c) empirical and/or statistical approaches. The 
most robust inversion methods are the ones that attempt to derive IOPs 
using mechanistic approaches, where approximations associated with 
some of the unknown parameters exist, i.e., spectral variability of spe
cific IOPs (e.g., (Roesler and Boss, 2003)). These techniques either solve 
for IOP components (like aph, acdom, anap) simultaneously through an 
optimization scheme (e.g., (Brando et al., 2012; Gege, 2014)) or follow a 
step-wise process (Lee et al., 2002) to sequentially estimate IOPs. The 
LUT-based methods apply a pre-generated LUT, where each Rrs spec
trum is associated with a combination of IOP and constituent concen
trations (as well as bottom substrate properties in optically shallow 
environments) (Gerace et al., 2013; Hedley et al., 2009; Mobley et al., 
2005; Moses et al., 2012a; Pahlevan and Schott, 2013). The empirical 
and/or statistical approaches range from methods that relate a number 
of principle components of Rrs spectrum to IOPs through multiple linear 
regressions (Barnes et al., 2014; Craig et al., 2012; Härmä et al., 2001), 
to neural networks (NN) that are optimized given Rrs and IOPs (Doerffer 
and Schiller, 2007; Ioannou et al., 2011; Jamet et al., 2005; Schiller and 
Doerffer, 1999), and to methods that utilize search mechanisms to 
identify optimal fitting coefficients to arrive at a solution for inverse 
problems (Chami and Robilliard, 2002; Pitarch et al., 2014; Song et al., 
2013; Zhan et al., 2003). 

Yet, most of the studies have been devised to function with current 
multispectral remote sensing technologies and are constrained to the 
number of unknown parameters for which they attempt to solve. 
Further, the widely used inversion methods apply various degrees of 
empiricism applicable to open ocean waters, limiting their utility in bio- 
geo-optically and spatio-temporally diverse coastal and inland waters 
(Mishra et al., 2013a). The global applicability of empirical approaches 
or NNs may be even more constrained for regions where IOPs and 
concentrations employed in the training are not adequately represen
tative of conditions under evaluation. We develop an MDN model 
(Section 4) that largely surmounts this ill-posed problem. In essence, 
MDNs learn the likelihoods associated with different solutions from 
which an optimal estimation is computed. 

2.2. Chlorophyll-a 

For years, studies have proven that Chla in optically complex waters 
can be estimated with various degrees of precision and/or accuracy from 

Table 1 
List of critical notations, acronyms, and symbols.  

Symbol Description 

Rrs In situ remote sensing reflectance 
aph In situ phytoplankton absorption 
a*

ph  Phytoplankton specific absorption 

R̂rs  Retrieved (image-derived) Rrs 

âph  Estimated aph from Rrs 

âr
ph  Retrieved (image-derived) aph 

â*
ph  

Retrieved (image-derived) phytoplankton specific absorption 

Chlae Estimated Chla from Rrs 

Chlar Retrieved (image-derived) Chla 
MDN-I MDN applied to Rrs 

MDN-S MDN applied to R̂rs  

Note that in situ phytoplankton absorption measurements are in vivo. 
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Rrs (Gitelson, 1992; O’Reilly et al., 1998). These studies, to a large 
extent, have been based on available multispectral images (mostly ac
quired by the Medium Resolution Imaging Spectrometer; MERIS) and 
have often used a two- or three-band index to estimate Chla (Gilerson 
et al., 2010; Moses et al., 2012b). With the anticipation of enhancements 
in the spectral capability of future global aquatic remote sensing mis
sions (e.g., Plankton, Aerosol, Cloud, and ocean Ecosystem; PACE 
(Werdell et al., 2019)), it is essential to devise novel approaches to 
predict water quality (WQ) parameters, such as Chla. 

A few review studies have conjectured the expected improvements in 
retrievals of WQ parameters and other bio-optical properties (Devred 
et al., 2013; Dierssen et al., 2020; Giardino et al., 2019; Hestir et al., 
2015). For instance, Giardino et al. (2019) speculated that Chla could be 
better estimated if contiguous bands were present allowing a switching 
between different bands to capture the relative maximum and/or min
imum of a reflectance spectrum. Hyperspectral data have enabled 
studies focusing on Chla estimations as well as multiple optically sig
nificant constituents in both optically deep and optically shallow waters 
(Albert and Gege, 2006; Lee et al., 2007). A bulk of previous studies were 
dedicated to estimating Chla or SPM using select spectral bands most 
sensitive to either parameter (e.g., Hakvoort et al. (2002); Kallio et al. 
(2001)). Other studies that demonstrate the full potential of hyper
spectral imagery applying all available spectral bands are commonly 
based on spectral matching techniques, i.e., curve fitting, or matrix 
inversion methods (MIM) (Brando and Dekker, 2003; Hoogenboom 
et al., 1998; Mobley et al., 2005). Both approaches require assumptions 
on, or some knowledge of, the spectral slopes and/or magnitudes of 
specific IOPs. Using MIM, Brando and Dekker (2003) mapped Chla, 
acdom, and SPM from a Hyperion scene of Deception Bay, Australia. 
Fichot et al. (2015) applied a partial least square regression to hyper
spectral images data to retrieve Chla, turbidity, and dissolved organic 
carbon in the San Francisco Bay-Delta Estuary. Other studies have 
implemented sensitivity analyses to identify optimal bands for Chla re
trievals (Sun et al., 2009). In this study, we will train an MDN model 
with high-fidelity in situ Rrs data, allowing the model to learn the spec
tral regions that contribute most to Chla estimations. 

3. Datasets 

3.1. Development data 

For aph retrievals, we used the SeaWiFS Bio-optical Archive and 

Storage System (SeaBASS) dataset in addition to data collected in several 
inland water bodies (N = 1444) shown in Fig. 1. The majority of the 
radiometric data were collected using the free-fall approach (Mueller 
et al., 2003). HyperOCR® radiometers were commonly used to collect 
data via the free-fall profiling and/or sky-block techniques (Lee et al., 
2013). A small fraction of the data had been collected using measure
ments of the water surface, sky, and plaque radiances by handheld 
spectrometry (e.g., ASD FieldSpec®) following the ocean optics protocol 
(Mueller et al., 2003). The discarded data amounted to only a small 
subset (<1%) of the initial database, because the data had undergone 
preliminary quality screenings by the data providers. A data-quality 
control was further carried out to exclude outliers identified through 
visual inspections of Rrs data exhibiting abnormal spectral features, 
highly inconsistent with known spectral properties of constituents 
measured in the water. 

A large portion of the data came from highly eutrophic or turbid 
waters of the Chesapeake Bay (Zheng et al., 2015), Mississippi aqua
culture ponds (Mishra et al., 2013a; Mishra et al., 2013b; Wang et al., 
2016), Lake Erie (Binding et al., 2019), Florida shelves (Cannizzaro 
et al., 2008; Soto et al., 2015), and small lakes in Wisconsin, Nebraska 
(Gurlin et al., 2011), and Indiana (Li et al., 2015; Tan et al., 2015) 
(Fig. 1). Moreover, data from three lakes in Asia, including Lake Taihu 
(N = 45) in China (Cao et al., 2020; Jiang et al., 2020; Xue et al., 2019), 
Lake Kasumigaura (N = 26), and Lake Suwa (N = 8) in Japan (Yang 
et al., 2012), were added to enhance the generalizability of the model. 

Fig. 1. Spatial distribution of the Rrs – aph dataset (N = 1444) used for training and validating the MDN model. The total number of samples available in each region 
is provided in round brackets. Additional data from Lake Taihu (N = 45) (China) and Lakes Kasumigaura (N = 26) and Suwa (N = 8) (Japan) are not shown on 
the map. 

Fig. 2. Spectral distribution of aph data (N = 1444). The whiskers refer to 
interquartile ranges with the bars denoting the minimum and maximum for 
each HICO band center. 
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The spectral distribution of aph data are illustrated in Fig. 2. While the 
quantitative filter pad technique was applied to measure aph in all 
research experiments (Roesler, 1998), we refer readers to the above- 
noted references for more details. The Rrs and aph were provided at 
various spectral resolutions (between 1 and 3.3 nm) and mostly avail
able for the 400–800 and 400–690 nm ranges, respectively. 

An augmented database of paired Rrs – Chla data (N = 3804) 
covering a remarkably wide range of trophic conditions was assembled 
(Pahlevan et al., 2020). Compared to our Rrs – aph dataset, this database 
provides a better representation of global Chla conditions (see Fig. 1 in 
(Pahlevan et al., 2020)). The recent update to the Rrs – Chla dataset was 
made by adding 875 in situ samples from lakes in Italy (Bresciani et al., 
2020; Warren et al., 2019) and Brazil (Cairo et al., 2020; da Silva et al., 
2020; Maciel et al., 2019), as well as from western Lake Erie (Moore 
et al., 2017), Indiana lakes (Song et al., 2013), and SeaBASS. 

The hyperspectral in situ data were resampled with the relative 
spectral responses of HICO, i.e., full-width-half-maximum of ~ 5.7 nm 
(Lucke et al., 2011), to simulate band-averaged Rrs spectra for model 
training and testing throughout this research (Section 4). 

3.2. Image data 

Images acquired by HICO with a nominal 100 m spatial resolution 
were utilized to demonstrate the reliability of our algorithm in the 
presence of uncertainties in atmospheric correction (AC) and instrument 
noise (Ibrahim et al., 2018). HICO data have been used in several coastal 
and inland water studies (Keith et al., 2014; Mishra et al., 2014; Moses 
et al., 2013; Ryan et al., 2014; Tufillaro and Davis, 2012). Most studies, 
however, applied existing algorithms that make use of select bands (Lee 
et al., 2002; O’Reilly et al., 1998) to obtain WQ and/or IOP maps. Here, 
we apply MDN models to atmospherically corrected HICO images and 
perform a matchup analysis using an independent dataset (Section 3.3). 
Furthermore, four HICO images over Lake Erie and the Chesapeake Bay 
are examined to demonstrate consistency in the spatial contexts of our 
generated products (Section 5.3). 

The HICO images were atmospherically corrected using the SeaWiFS 
Data Analysis System (SeaDAS) (Ibrahim et al., 2018), which, by default, 
retrieves Rrs (hereafter R̂rs; Table 1) at 65 spectral bands of HICO within 
the 358–719 nm range. Of these bands, due to increased uncertainties in 
the ultra-violet region, we mainly focused on spectral bands >400 nm 
leaving a total of 54 spectral bands for algorithm testing and/or evalu
ations. To process the images, all the SeaDAS default processing options 
(e.g., the 747–787 nm band pair for aerosol removal, water vapor 
correction using the 705, 725, 745 nm band combination, O2 correction) 
were adopted. 

Due to substantial misregistration errors associated with the image 
products (Garcia et al., 2014; Keith et al., 2014), an automatic regis
tration pipeline was developed to refine the geolocation accuracy of 
~150 HICO R̂rs products evaluated throughout this study. First, HICO 
swaths were projected onto a rectangular coordinate grid using their 
supplied geographic geolocation. The land-water boundaries were then 
estimated using the normalized difference vegetation index, and a 
Gaussian averaging filter was subsequently applied to ensure minimal 
artifacts are present. The resulting swaths, along with a permanent 
global water cover dataset (Buchhorn et al., 2020), were then used to 
estimate a homography matrix (Alcantarilla and Solutions, 2011; 
Fischler and Bolles, 1981); thereby determining a projection from the 
geolocated water cover dataset into HICO image coordinates. This pro
jection was used to seed a second round of homography estimation, 
using the original (unfiltered) HICO swaths. Finally, this transformation 
was applied to the water cover geolocation grid, projecting it onto the 
HICO swaths and resulting in per-pixel geographic geolocation. Exper
imentation with accurately geolocated images (e.g. Landsat-8 scenes) 
suggested that the described registration process is able to obtain sub- 
pixel registration accuracy (i.e. < 100 m for HICO products). 

3.3. Matchup data 

To assess the performance of MDNs in practical applications, we 
identified near-coincident in situ measurements made within ±3 hr of 
HICO image acquisitions. Note that this dataset is independent of the 
development data described in Section 3.1. Overall, 65 Rrs matchups, 
105 Chla matchups, and 29 aph matchups over the western basin of Lake 
Erie, lower Chesapeake Bay, and Florida (FL) estuaries, including Pen
sacola, St. Andrew, and Choctawhatchee Bays (Casey et al., 2019; Keith 
et al., 2014; Schaeffer et al., 2015), were located. Of the 65 Rrs samples, 
38 and 40 samples were accompanied with Chla and aph measurements, 
respectively, providing an opportunity to evaluate the retrievals from 
both Rrs and R̂rs (Tables 4 and 5). This subset – all of which were ac
quired in FL estuaries (Keith et al., 2014) – enabled a better under
standing of how uncertainties in AC affect algorithm performances. Our 
matchup datasets were collected by the Great Lakes Environmental 
Research, Environment and Climate Change Canada, Maryland 
Department of Natural Resources (MD DNR), Chesapeake Bay Program 
(CBP), and U.S. Environment Protection Agency through routine 
monitoring exercises or funded research projects. While all the aph 
matchups were available through multi-year field campaigns in FL es
tuaries (Keith et al., 2014), ~ 50% of Chla matchups originated in the 
lower Chesapeake Bay area through CBP (https://www.chesapeakebay. 
net) and MD DNR (http://eyesonthebay.dnr.maryland.gov). Consid
ering Rrs matchups, only six samples were from the western Lake Erie, 
and the rest were acquired in FL estuaries. A summary of descriptive 
statistics attributed to these matchups is provided in Table 2. Section 3.1 

4. Approach 

A full description of MDNs designed for Chla retrievals from the 
MultiSpectral Instrument (MSI) and Ocean and Land Color Instrument 
(OLCI), as well as for approximating particulate backscattering (bbp) is 
given in (Pahlevan et al., 2020) and (Balasubramanian et al., 2020). 
Nonetheless, we will provide a concise overview of the two MDN models 
for estimating aph and Chla. 

4.1. Mixture density networks 

Conventional NNs directly predict target variables by approximating 
the conditional average of target data. However, in approximating 
continuous target variables (e.g., aph or Chla), the conditional average is 
a limited representation of the statistical properties of the target space, 
and often fails to produce practical solutions (Bishop, 1994). This 
problem frequently arises when the problem at hand is a multi-valued 
mapping (e.g., IOP inversion) (Sydor et al., 2004; Yang et al., 2011). 
MDNs surmount this limitation by modeling conditional probabilities of 
the target variables given input data to obtain a more complete picture 
of the probability distribution of the data in the target space. MDNs 
produce three statistical measures of a target variable (e.g., aph), namely 
a mean vector (μ), a covariance matrix (Cov), and a mixing coefficient 
(α) for each probability density function modeled as Gaussian functions. 

Table 2 
Statistical attributes of HICO matchups used to assess the performance of the 
atmospheric correction and MDN models. Of the 65 Rrs matchups, 38 and 40 
samples had an associated Chla and aph, respectively. Of those 40 paired Rrs – 
aph, 29 were acquired near-coincident with HICO overpasses. The full spectral 
coverage for both Rrs and aph data was 400–735 nm. STD stands for one standard 
deviation.   

Median Mean Min Max STD N 

Rrs (443) 0.0019 0.0026 0.0000 0.0091 0.0019 65 
Rrs (670) 0.0025 0.0030 0.00089 0.0119 0.0019 
aph(443) 0.2694 0.2780 0.0972 0.5780 0.0980 40 
aph(670) 0.0681 0.0796 0.0314 0.1571 0.0310 
Chla 6.0 13.93 0.249 173.0 23.237 105  
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The learned probability density via MDNs is as follows 

p
(

âph| Rrs

)

=
∑c

i=1
αi(Rrs) ϕi

(
aph | Rrs

)
(1)  

in which âph is the estimated aph and ϕi is a Gaussian distribution with μ 
and Cov as the mean vector and the covariance matrix, respectively. 
Fig. 3 illustrates a block diagram of an MDN model designed for âph 

retrievals. Once trained, the MDN predicts the conditional probability 
density of âph (or estimated Chla; Chlae) for each input Rrs. Having ob
tained a proper representation of the conditional density of âph via its 
inter-band correlations (Cov), it is straightforward to compute any 
desired statistical parameters. The Gaussians are combined to form the 
final output estimation via maximum likelihood, which represents the 
estimate in the area of highest probability mass: 

âph = μi(Rrs) : i = argmax α(Rrs) (2) 

In this study, two groups of MDN models, MDN-I (in situ) and MDN-S 
(satellite), were developed. The MDN-I models are the ones trained with 
722 and 1902 randomly chosen pairs of Rrs – aph and Rrs – Chla (Section 
3.1), respectively, leaving out the rest half of the data (722 and 1902) for 
testing. Following several experiments on the size of the training subset, 
we found that increasing the proportion of training data versus the 
testing data introduces insignificant improvements in the model per
formance and, thus approximately only one-half of the development 
data were used to estimate âph and Chlae. Input to MDN-I was composed 
of 50- (409–690 nm) and 67-element Rrs vectors (409–787 nm) for 
modeling âph and Chlae, respectively. The former choice was made to 
include a subset of the aph dataset (N = 140) available only for this 
spectral range, discarding the 690–700 nm range. 

Following the validation of MDN-I models (Section 5.1), MDN-S 
models were trained with the entire development data for applications 
to HICO R̂rs maps (Sections 5.2 and 5.3). In this case, however, we 
removed 9 and 14 samples from our paired Rrs − aph and Rrs− Chla 
datasets that originated from the western Lake Erie, leading to 1435 and 
3785 records. This was carried out to ensure matchup data (Section 3.3) 
are excluded in our total training set. For HICO-derived âph products, i. 
e., âr

ph, input features to MDN-S consisted of a 50-element R̂rs vector. 

Note that if R̂rs were invalid in any bands, no âr
phretrievals would be 

attempted. For Chlae retrieval, to maximize the number of valid re
trievals (due to frequent invalid retrievals in the blue bands), we trained 
an MDN-S model that accepts input spectra ranging only from 501 to 
713 nm, i.e., 38 bands. 

4.2. Benchmarking 

To analyze the performance of MDNs, select heritage IOP and Chla 
algorithms were used for comparisons against our algorithms. Given 
their proven performance, the Quasi Analytical Algorithm (QAA) (Lee 
et al., 2002) and Generalized IOP inversion (GIOP) (Werdell et al., 2013) 
were adopted as benchmark algorithms. Although these two models are 
primarily intended for moderately turbid coastal and clear ocean waters, 
due to their extensive use in aquatic studies and straightforward 
implementation (IOCCG, 2006), we considered these algorithms as 
reference models for the wide range of trophic conditions of inland and 
coastal waters (Pahlevan et al., 2020). 

For Chla, we implemented a total of seven state-of-the-art algorithms 
(Hu et al., 2012; Mishra and Mishra, 2012; Moses et al., 2009; Moses 
et al., 2012b; O’Reilly et al., 1998; O’Reilly and Werdell, 2019; Smith 
et al., 2018). The algorithms examined were OC6 (O’Reilly and Werdell, 
2019), Blend (Smith et al., 2018), 3-Band (Moses et al., 2012b), and the 
Normalized Difference Chla Index (NDCI) (Mishra and Mishra, 2012) 
(see Appendix in (Pahlevan et al., 2020)). We further evaluated the Gons 
(Gons et al., 2002) and Gilerson 2-Band (GI2B) algorithms (Gilerson 
et al., 2010). For conciseness, the demonstration is provided for the five 
best-performing algorithms (Section 5.1). It should be noted that the 
NDCI, Gons, and GI2B models were originally calibrated and tested with 
Chla within the range of 1–60, 1–185, 2–100 [mg m− 3], respectively, 
and no attempt was made to re-calibrate them in this study. 

4.3. Performance metrics 

Two metrics explaining error and bias in retrievals proposed in 
Morley et al. (2018) were adopted. These measures are calculated as 
below 

ϵ = 100×
(
10Y − 1

)
[%] where Y = Median ∣log10(q̂/q)∣ (3)  

β = 100× sign(z)
(
10|Z| − 1

)
[%] where Z = Median (log10(q̂/q)

)
(4)  

where q̂ and q are estimated and in situ quantities, respectively, Median 
is the median operator, ϵ represents the median symmetric accuracy 
(MdSA), and β is the symmetric signed percentage bias. These metrics 
are simple for interpretation, fairly robust against outliers, and zero- 
centered compared to those in Seegers et al. (2018). In addition to the 
above metrics, we will also report the slope of linear regression (S) to 
provide further insights into the goodness of retrievals. 

5. Result 

5.1. Performance assessment 

The performance of MDN-I against that of QAA and GIOP assessed at 
443 and 530 nm is illustrated in Fig. 4. Evidently, the generic models 
perform reasonably well in the blue bands in oligotrophic waters (i.e., 
aph < 0.1 [m− 1] (Roesler and Perry, 1995)), with âph tending to diverge 
from the 1:1 line with an increase in absorption. In particular, QAA with 
ϵ of ~48% outperforms GIOP at the 443 nm band and performs satis
factorily within the 0.1–1.0 [m− 1] range. For âph(530), QAA tends to 
overestimate whereas GIOP exhibits 10–20% larger errors than that for 
the 443 nm band, even though it consistently provides fair predictions 
for < 0.01 [m− 1]. The performance of both models degrades signifi
cantly in the red portion of the spectrum (not shown here). The data 
distributions suggest that GIOP âph are spectrally correlated (Werdell 
et al., 2013), verifying potential improvements are possible if more 
representative initial phytoplankton specific absorption (a*

ph) were 
available. On the contrary, worsening QAA retrievals in the green (and 
red) corroborates that the model assumptions (Lee et al., 1998) do not 
hold in eutrophic waters; although Lee and Carder (2004) surmised that 

Fig. 3. Block diagram illustrating the primary elements of the Mixture Density 
Network (MDN) designed in this study for âph(λ) retrieval. Three probability 
density functions with their associated parameters (μ, σ) and mixing coefficients 
(α) are defined to arrive at a best solution. 
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an increase in the pure water absorption hampers âph inversion in the 
red region. 

From Fig. 4, it is inferred that MDN-I offers significantly more ac
curate and precise âph for the two visible bands with small biases and 
fairly low overall errors. Fig. 5 further illustrates a band-by-band per
formance assessment of MDN-I expressed through ϵ and β. This assess
ment suggests that errors do not fluctuate drastically, i.e., from 20 to 
30%, across the 409–690 nm range, and there is a minimal bias in âph 

throughout the spectrum. Of particular interest for freshwater HAB 
studies (i.e., cyanobacteria) is the retrieval accuracy at the characteristic 
620 nm peak, which is found to be within the 20 to 25% range. The 
apparent elevated uncertainties in the 520–600 nm region are found to 

be related to the generally low magnitude of aph (Fig. 2) or higher 
variability in the normalized Rrs in the green region, suggesting that the 
error metrics used are somewhat sensitive to the signal intensity. 

The performance of MDN-I for Chlae is evaluated against that of 
other widely used methods in Fig. 6. The MDN model remarkably out
performs other approaches across a wide range of Chla values, from 
moderately eutrophic coastal waters to hypereutrophic lake waters. This 
is, however, anticipated as MDN utilizes the entire spectral content of a 
given Rrs spectrum, whereas band-ratio models make use of select bands 
correlated with the variability in phytoplankton biomass (Clarke et al., 
1970; Gitelson et al., 2007; Gordon et al., 1980; Mittenzwey et al., 
1992). In particular, the Blend and GI2B models are found to perform 
fairly well in the range of 10 < Chla < 80 [mg m− 3] but otherwise return 
unreliable Chlae. Similarly, the Gons model provides fairly robust re
trievals within the 10 to 40 [mg m− 3] range. 

5.2. HICO matchup analysis 

A total of 12 paired Rrs − R̂rs spectra are depicted in Fig. 7, where 
station identifications (IDs), in situ Chla, and that estimated from both 
Rrs (Chlae) and R̂rs (Chlar) are also denoted. Despite noticeable errors in 
the blue bands, major improvements in R̂rs products through SeaDAS are 
achieved with respect to those reported in previous studies (Keith et al., 
2014; Mishra et al., 2014). Table 3 includes performance statistics for 
five selected visible bands. By comparing the three metrics, one may 
infer that there is mostly a band-dependent underestimation in R̂rs. Note 
however that while instrument artifacts are noticeable in some of the R̂rs 

bands (e.g., the peak around 416 and 490 nm at PB05), potential effects 
of land adjacency, in particular in fairly small FL estuaries (Keith et al., 
2014), have not been accounted for. From the reported Chlae in Fig. 7, it 
can be realized that the MDN model is sensitive to uncertainties in R̂rs – 
more details are provided in Table 5. One should also note that the Rrs 

Fig. 4. Performance of MDN-I (N = 722) at two spectral bands compared to that of QAA and GIOP commonly used for âph retrievals in fairly clear ocean waters. The 
MDN model returns nearly zero biases and relatively small overall errors. Included metrics are error (ϵ), bias (β), and slopes of linear regression (S). 

Fig. 5. Performance assessment (Eqs. (3) and (4)) of MDN-I (N = 722) for âph 

inversion across HICO visible bands. The larger errors are due to the lower 
magnitude of the signal within the 500–620 nm range. 
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measurements may be contaminated with skyglint effects (Kutser et al., 
2013) resulting in increased estimated errors in R̂rs and/or in Chlae. 

The performance of MDNs for âph at eight stations in FL estuaries is 
illustrated in Fig. 8. The error and bias metrics (Table 4) indicate 
degraded performances of MDNs for both âph and âr

ph with respect to the 
statistics reported in Figs. 4 and 5, warranting the need for a further 
generalization of MDN through an extended training dataset. A further 
examination of âph and âr

ph underscores the importance of highly accu

rate R̂rs products to allow for high-fidelity âr
ph retrievals (e.g., ϵ are two- 

to-four times larger for âr
ph). The performance assessment of MDNs and 

the benchmark algorithms for Chla retrievals is reported in Table 5. 
Despite the strong evidence favoring MDN to return most accurate Chlae 

(< 20% errors), its performance degrades more than three times for 
Chlar. This loss in performance is pronounced for all the algorithms 
except for NDCI, which, surprisingly, yields better overall estimates, 
suggesting its lower sensitivity to uncertainties in AC. Regarding the 
NDCI performance, one should, however, note that a) the associated 
errors are >40%, which may render its utility for scientific studies 
limited, b) the linear regression slopes are fairly low (similar to the one 
in Fig. 6), and c) this assessment may not have global implications (N =
105), as opposed to the analysis presented in Fig. 6. 

5.3. Demonstration: map products 

Knowing the uncertainties in the atmospherically corrected products 
(Table 3) and the resultant uncertainties in Chlar and âr

ph, the MDN-S 

models were applied to R̂rs maps to demonstrate the algorithm perfor
mances for practical considerations. Fig. 9 illustrates two Chlar maps 
over the western basin of Lake Erie. The spatial distribution of Chlar on 
Sep 3rd 2011 in Lake Erie conforms to the historic knowledge of 

cyanobacteria distribution that tends to accumulate and intensify in the 
western edge of the lake (Binding et al., 2019). The bloom is found less 
severe across this section of the lake on Sep 8th 2014. The frontal feature 
separating the Detroit River plume from the rest of the lake (Station B3) 
is also consistent with prior observations (Chaffin et al., 2011; Moore 
et al., 2017). The R̂rs spectra associated with arbitrarily chosen stations 
denoted in Fig. 9A and B are illustrated in Fig. 10 where the corre
sponding âr

ph and â*
ph(= âr

ph/Chlae), are also presented. The spectra 
extracted at Stations A1-2 and B2 clearly exhibit areas impacted by high 
concentrations of Chla and phytoplankton absorption spectra charac
teristic of cyanobacteria (Matthews and Bernard, 2013; Zhang et al., 
2012). 

The broad peaks in âr
ph around the 620 nm band, for example, 

correspond well with the depression bands in the associated R̂rs. Further, 
the spectra extracted at Station B2 – with Chlar = 160 [mg m− 3] – in the 
Sandusky Bay known to commonly host the cyanobacterium Planktothrix 
sp. (Davis et al., 2015) exhibit the expected spectral variability. The very 
low, and fairly “flat”, â*

ph at this station implies phytoplankton pack
aging effect and presence of picoplankton as conjectured in Binding 
et al. (2019). The âr

ph spectra at Stations A1-2 influenced by the blooms 
from the Maumee River are similar to that of B2 with slight shifts in the 
depression areas around the 550 nm region. The âr

ph spectra at Stations 
A3-4 and B3 show distinct shapes similar to those typically observed in 
oligotrophic lakes (Effler et al., 1998) and closely match the spectra 
reported in Moore et al. (2017). The spectra extracted from the near
shore pixels (B4) (Chlar= 18.3 [mg m− 3]) also appear to capture the 
spectral signature around ~620 nm, suggesting high concentrations of 
cyanobacteria that advected along the southwest shorelines of the lake 
(Berry et al., 2017). 

A Chlar map and locations of sample spectra extracted for four 

Fig. 6. Chlae (estimated Chla) from MDN-I (N = 1902) trained with HICO-simulated Rrs bands (409–787 nm) (Section 4.1) evaluated against the state-of-the-art 
algorithms (Gilerson et al., 2010; Gons et al., 2002; Mishra and Mishra, 2012; O’Reilly and Werdell, 2019). Included metrics are error (ϵ), bias (β), and slopes of 
linear regression (S). 
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locations across a HICO image of April 1st 2010 over the lower Ches
apeake Bay area is illustrated in Fig. 11A. The image captures spring 
blooms along the tributaries of the lower bay (Harding et al., 1994; 
Marshall and Egerton, 2010; Marshall and Nesius, 1996). The bloom at 
the mouth of the James River (A1) is manifested in the extracted spectra 
(Fig. 12) with an overall high magnitude of âr

ph and a major trough 

around 675 nm. While R̂rs at Stations A2 and A4 are, in general, very 
similar in shape and magnitude, the magnitudes of âr

ph and the shapes of 

â*
ph imply different concentrations and groups of phytoplankton. These 

differences in âr
ph can be corroborated by examining Chlar, i.e., 4.4 [mg 

m− 3] at Station A2 versus 8.9 [mg m− 3] at Station A4. Further, the 

differences in the magnitude and shapes of R̂rs within the <450 nm in
terval for these stations reflect in the associated â*

ph. The spectra at 
Station 3 are typical of moderately eutrophic coastal waters with Chlar 

of 1.6 [mg m− 3] and low âr
ph. The â*

ph is also similar to the average aph* 
reported in Babin et al. (2003). 

The R̂rs and âr
ph in Fig. 11B correspond to Chlar ranging from 0.77 to 

21.2 [mg m− 3]. Specifically, â*
ph associated with Station B1 (Rappa

hannock River) evidently shows a peak around 620 nm, suggesting a 
considerable presence of cyanobacteria (Magnuson et al., 2004; 
Marshall, 1994). This peak is less pronounced at Station B2 situated in 
the main stem of the bay and disappears for Station 4, whose spectrum 
exhibits the largest ratio of âr

ph(444)/âr
ph(670), typically used to deter

mine phytoplankton size structure (Babin et al., 2003; Bricaud et al., 
1995). The cyanobacteria-induced dips are also found to proportionally 
correspond with R̂rs at Stations B1 through B3. The variability in 
accessory pigment concentrations and compositions may also be infer
red through examining â*

ph spectra (Marshall and Nesius, 1996). The 
spectrum at Station 2, for instance, displays a peak ~560 nm related to 
phycoerythrin (Ray et al., 1989). 

Fig. 7. Selected Rrs− R̂rs (HICO) matchups in Lake Erie and FL estuaries. In situ measured Chla and Chla derived from both Rrs (Chlae) and R̂rs (Chlar) derived via 
MDN-I and MDN-S, respectively, are denoted. Station IDs are also included for future references (Keith et al., 2014). Full performance statistics for N = 65 matchups 
are provided in Table 3. Note that Rrs measurements may include uncertainties due to skyglint contaminations. The assocaited aph spectra for the second and third 
rows are illustrated in Fig. 8. 

Table 3 
Performance statistics of the atmospheric correction obtained through near- 
coincident Rrs matchups acquired in FL estuaries. S stands for the slope of 
linear regression.  

Band [nm] ϵ [%] β [%] S N 

409 84.7 6.0 0.66 65 
444 131.3 − 118.6 1.08 
558 37.5 − 36.0 1.14 
621 35.7 − 29.4 1.01 
667 36.7 − 27.4 0.98  
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6. Discussion 

6.1. Hyperspectral vs. multispectral 

It is widely accepted that satellite-based hyperspectral observations 
have the potential to boost our knowledge of aquatic ecosystems at 
global scales. Using a fairly large database of in situ data, we showed that 
our developed machine-learning models outperform existing Chla 

retrievals methods and IOP inversion models. We demonstrated that 20 
to 25% error in Chla retrievals is achievable. Nevertheless, compared to 
uncertainties attributed to retrievals from multispectral sensors like 
OLCI and MSI (Pahlevan et al., 2020), the performance of MDN is found 
to be only marginally improved when >35 bands are utilized. Although 
our dataset does not represent all global aquatic ecosystems, it is 
inferred that the spectral information content provided through OLCI 
and even MSI may be adequate for the retrieval of Chla in these eutro
phic waters (Gitelson et al., 2007). We speculate that expanding the 
validation data may further favor hyperspectral observations. 

The performance of MDN models for âph retrievals using multispec
tral observations, such as those made by the Moderate Resolution Im
aging Spectroradiometer (MODIS), is provided in Fig. 13. Using the 
development data (Section 3.1), we devised a model with simulated 
MODIS Rrs and aph spectra (both ocean and land bands) as input and 
output features, respectively. In comparison to Figs. 4 and 5, while it is 
evident that MDN considerably outperforms heritage QAA and GIOP 
models, it exhibits 3 to 25% larger errors than those obtained through 
the model trained with simulated HICO spectra. This brief analysis 
supports that it is primarily the model itself that enables high-quality 
retrievals of âph, though it tends to somewhat leverage inter-band cor
relations present in the hyperspectral domain. A more extensive dataset 

Fig. 8. In situ aph and MDN-derived âph and âr
ph, obtained by incorporating Rrs and R̂rs, respectively, for selected stations in FL estuaries. More detailed performance 

analyses for N = 40 and N = 29 in situ sets and matchups are provided in Table 4. The corresponding Rrs and R̂rs spectra are illustrated in Fig. 7. 

Table 4 
Performance statistics of MDNs for aph retrievals from Rrs (âph) and R̂rs (âr

ph) 
computed via in situ samples and matchups in FL estuaries. QAA and GIOP es
timates were highly erroneous (e.g., band average errors >200% for QAA sup
plied with Rrs) and are excluded.   

âph  âr
ph  

Band [nm] ϵ [%] β [%] S N ϵ [%] β [%] S N 

409 37.5 − 24.5 0.66 40 96.4 − 76.4 − 0.38 29 
444 36.6 − 27.6 0.78 108.6 − 90.5 − 0.28 
558 38.6 31.4 0.21 94.2 19.1 − 0.49 
621 46.6 40.4 0.49 113.4 42.2 − 0.40 
667 24.2 20.1 0.78 63.2 40.8 − 0.15  

Table 5 
Performance statistics associated with Chla retrievals from Rrs (Chlae) and R̂rs (Chlar) calculated for in situ samples and HICO matchups in FL estuaries. Top algorithms 
are reported with boldfaced fonts.   

Chlae  Chlar 

ϵ [%] β [%] S N  ϵ [%] β [%] S N 

MDN-I 17.8 ¡0.8 0.91 38 MDN-S 65.4 49.5 0.41 105 
Blend 136.7 136.7 0.34 38 Blend 239.8 239.8 0.29 104 
OC6 121.3 87.9 0.22 38 OC6 452.8 383.3 0.35 103 
NDCI 44.1 − 2.3 0.51 38 NDCI 51.2 40.0 0.44 105 
Gons 38.9 − 38.9 1.27 5 Gons 79.8 56.6 0.62 97 
GI2B 29.1 2.7 0.95 37 GI2B 117.9 98.5 0.52 103  
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is required to arrive at a general conclusion on the extent to which the 
model fully utilizes the hyperspectral information content. 

The main advantage of hyperspectral data in optically deep waters is 
in their ability to address aquatic biodiversity (Muller-Karger et al. 

Fig. 9. HICO Chlar maps derived by implementing MDN-S over the western 
basin of Lake Erie. The images have been processed using an identical atmo
spheric correction processing pipeline (Ibrahim et al., 2018). The station 
numbers correspond to the R̂rs and âr

ph spectra evaluated in Fig. 10. 

Fig. 10. HICO R̂rs and the corresponding âr
ph and â*

ph at four arbitrary locations (St.)in Fig. 9. Note the differences in the range of y-axes. The spectral bands beyond 
700 nm are truncated to highlight âr

ph retrieval in the visible spectrum. 

Fig. 11. Same as Fig. 9 but for the lower Chesapeake Bay region. The station 
numbers correspond to the R̂rs and âr

ph spectra in Fig. 12. 
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2018) (e.g., pigment and phytoplankton community composition) 
through revealing subtle spectral features in aph and bbp (Roelke et al., 
1999; Vandermeulen et al., 2017; Wolanin et al., 2016). Such spatially 
explicit products together with ecosystem models combined through 
data assimilation techniques are anticipated to improve HAB forecasting 
skills in the future (Schofield et al., 1999). Further, more accurate 

retrievals of aph and bbp may lead to an improved differentiation of 
organic and inorganic particles and offer flexibility in the choice of al
gorithm solutions, including machine-learning models. Nonetheless, the 
MDN model is expected to enable equally robust aph retrievals from 
existing multispectral missions; although spectral information would be 
inadequate to fully infer phytoplankton community structure. 

6.2. MDN models 

Following their first successful demonstration (Pahlevan et al., 
2020), MDNs are found to be capable of handling inverse problems to 
the extent that they are trained with a representative dataset. This model 
shows major promise in retrieving aph compared to the heritage inver
sion techniques constructed for retrievals in fairly clear oceanic envi
ronments. While it is essential for the model performance to be validated 
extensively, we anticipate that the performance is enhanced when 
simultaneous retrievals of multiple IOP components and WQ parameters 
are attempted. Under such scenarios, statistical approaches, such as 
multiple imputations (Sovilj et al., 2016), could be utilized to fill missing 
features (e.g., paired Rrs − aph measurements are available, but acdom is 

Fig. 12. HICO R̂rs and the corresponding âr
ph and â*

ph at four arbitrary locations (St.) in the maps shown in Fig. 11. Note the differences in the range of y-axes. The 
spectral bands beyond 700 nm are truncated to highlight âr

ph retrievals in the visible spectrum. 

Fig. 13. MDN performance assessment associated with âph for a multispectral 
mission (i.e., MODIS). An MDN model was trained with simulated MODIS Rrs - 
aph spectra. See Fig. 5 for comparison. 
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not measured). With this strategy, the trained model will learn corre
lations among IOPs, Chla, and other parameters of interest to further 
constrain the solution space. Two other aspects of our research should be 
highlighted. First, despite the use of an independent in situ matchup 
dataset in FL estuaries to assess the model performances, future research 
should be dedicated to appraising the performance of MDN in other 
regions (Dierssen et al., 2020). This may only be possible through major 
airborne campaigns or by relying on hyperspectral imagery gathered by 
current sensors (e.g., PRecursore IperSpettrale della Missione Applica
tiva (PRISMA) (Candela et al., 2016), DLR Earth-Sensing Imaging 
Spectrometer (DESIS); (Alonso et al., 2019)) prior to the launch of future 
hyperspectral missions driven by aquatic requirements (e.g., PACE; 
(Cetinic et al., 2019)). Second, although our achieved uncertainties in 
âph (Fig. 5) indicate significant enhancements (20 < ϵ < 30%) with 
respect to those obtained from generic algorithms, given the retrieval 
statistics and illustrations in Table 4 and Fig. 8, for a robust assessment 
of aquatic biodiversity more accurate estimates are desired, i.e., ϵ < 10% 
(CEOS, 2018; Muller-Karger et al., 2018; Roelke et al., 1999). This un
certainty requirement should be precisely characterized through end-to- 
end modeling exercises focusing on categorizing phytoplankton taxa, 
genera, and species via their optical properties. 

6.3. Atmospheric correction and instrument performance 

Despite the observation that heritage AC provided improved R̂rs 

products with respect to previous studies, negative retrievals in R̂rs(λ <

500 nm) were frequently identified in highly eutrophic and/or turbid 
waters, which may have been induced by either uncertainties in the 
extrapolation of the aerosol contribution into the blue spectral region or 
inadequate accounting of backscattering in the near-infrared bands 
(Frouin et al., 2019). As expected, these uncertainties have explicit 
implications in downstream products. For instance, in this study, 
underestimated R̂rs yielded ~50% overestimations of Chlae r (Tables 3 
and 5). The corresponding impacts on âph were on the order of two-to- 
four times larger errors at selected HICO bands (Table 4). Needless to 
state that inadequate vicarious calibrations (due to limited number of 
matchups), residual biases in HICO’s TOA measurements (Ibrahim et al., 
2018; Pahlevan et al., 2017), and adjacency effects (Sterckx et al., 2011) 
may also contribute to additional uncertainties in these products. It is 
also worthwhile noting that rigorous corrections for gaseous absorption, 
in particular for bands utilized in the aerosol estimation (e.g., 747 nm), 
were found to be crucial in producing realistic R̂rs. 

Although HICO was a proof-of-concept mission and lacked radio
metric stability required for aquatic studies (Ibrahim et al., 2018), we 
found that its signal-to-noise (SNR), i.e., >200:1 for the 400–600 nm 
bands and > 100:1 for 600–700 nm (Lucke et al., 2011), should provide 
adequate products for robust analyses of aquatic ecosystems (Moses 
et al., 2012a). Nevertheless, one may attempt to boost SNR by spatial 
and/or spectral band aggregations assuming the systematic noise (e.g., 
striping, electronic/optical crosstalk, poor dark-current correction) is 
negligible. That said, MDN appeared to be insensitive to spectral arti
facts in HICO products (Section 5.2), where fairly smooth âr

ph spectra are 

derived despite the presence of unnatural features in R̂rs. 

7. Conclusion 

This study serves as the first demonstration for the hyperspectral 
retrieval of aph and Chla through mixture density networks (MDNs). To 
do so, hyperspectral in situ data as well as spaceborne radiometric ob
servations acquired by the proof-of-concept HICO mission were 
employed. The validation data (N = 722 for aph and N = 1902 for Chla) 
confirmed that the MDN models significantly outperform the existing 
global models with 20 to 30% overall median errors and near-zero biases 
in retrievals. The models implemented on atmospherically corrected 

HICO images were analyzed for their performances using an indepen
dent matchup dataset. The performance loss due to uncertainties in R̂rs 

was quantified to range from three-to-four times for Chlae and âr
ph, 

respectively. Despite the uncertainties in the atmospheric correction, the 
extracted âr

ph spectra were in agreement with previously published 
spectra for selected locations across four HICO swaths in Lake Erie and 
the Chesapeake Bay. It is concluded that to enable rigorous HAB char
acterizations and analyses of phytoplankton biodiversity and their 
community composition, further improvements in aph retrievals are 
required, i.e., < 10% error across the visible bands. Future research is 
anticipated to enhance the model performance by simultaneously 
retrieving IOPs, water quality indicators, and physical and/or environ
mental variables (e.g., skin temperature, salinity) to constrain the so
lution space. Nevertheless, the performance of the atmospheric 
correction in coastal and freshwater ecosystems still appears to be the 
primary challenge limiting practical uses of hyperspectral satellite- 
derived IOP products, such as aph. 
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