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A B S T R A C T   

We introduce a new platform, Ocean Color - Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART), for 
analysis of data obtained by satellite ocean color sensors. OC-SMART is a multi-sensor data analysis platform 
which supports heritage, current, and possible future multi-spectral and hyper-spectral sensors from US, EU, 
Korea, Japan, and China, including SeaWiFS, Aqua/MODIS, SNPP/VIIRS, ISS/HICO, Landsat8/OLI, DSCOVR/ 
EPIC, Sentinel-2/MSI, Sentinel-3/OLCI, COMS/GOCI, GCOM-C/SGLI and FengYun-3D/MERSI2. The products 
provided by OC-SMART include spectral normalized remote sensing reflectances (Rrs values), chlorophyll_a 
(CHL) concentrations, and spectral in-water inherent optical properties (IOPs) including absorption coefficients 
due to phytoplankton (aph), absorption coefficients due to detritus and Gelbstoff (adg) and backscattering co
efficients due to particulates (bbp). Spectral aerosol optical depths (AODs) and cloud mask results are also pro
vided by OC-SMART. 

The goal of OC-SMART is to improve the quality of global ocean color products retrieved from satellite sensors, 
especially under complex environmental conditions, such as coastal/inland turbid water areas and heavy aerosol 
loadings. Therefore, the atmospheric correction (AC) and ocean IOP algorithms in OC-SMART are driven by 
extensive radiative transfer (RT) simulations in conjunction with powerful machine learning techniques.To 
simulate top of the atmosphere (TOA) radiances, we solve the radiative transfer equation pertinent for the 
coupled atmosphere-ocean system. For each sensor, we have created about 13 million RT simulations and 
comprehensive training datasets to support the development of the machine learning AC and in-water IOP al
gorithms. The results, as demonstrated in this paper, are very promising. Not only does OC-SMART improve the 
quality of the retrieved water products, it also resolves the negative water-leaving radiance problem that has 
plagued heritage AC algorithms. The comprehensive training datasets created using multiple atmosphere, 
aerosol, and ocean IOP models ensure global and generic applicability of OC-SMART. 

The use of machine learning algorithms makes OC-SMART roughly 10 times faster than NASA’s SeaDAS 
platform. OC-SMART also includes an advanced cloud screening algorithm and is resilient to the contamination 
by weak to moderate sunglint and cloud edges. It is therefore capable of recovering large amounts of data that 
are discarded by other algorithms (such as those implemented in NASA’s SeaDAS package), especially in coastal 
areas. OC-SMART is currently available as a standalone Python package or as a plugin that can be installed in 
ESA’s Sentinel Application Platform (SNAP).   
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1. Introduction 

After a successful proof-of-concept mission using CZCS (1978–1986), 
SeaWiFS (1997–2010), MODIS (1999-present), MERIS (2002− 2012), 
and VIIRS (2012-present) for over 20 years, have provided a global view 
of many useful products representing optical in-water constituents of 
natural waters such as chlorophyll-a, especially in open ocean areas 
where the dominant absorbers and scatterers of light in surface waters 
are phytoplankton. It is still very challenging, however, to retrieve in- 
water products from optically-complex environments such as coastal 
areas, where approximately 50% of the world’s human population live 
and generate about 46% of global economic activity. Coastal waters are 
characterized by a myriad of complex interactions among human ac
tivities, biogeochemical cycles, and physical dynamics. Highly 
absorbing dissolved organic matter and absorbing and scattering 
organic and inorganic particles dominate coastal waters and can be in
dependent of the coastal phytoplankton community. In shallow coastal 
waters, re-suspended sediments and other particulates scatter light, 
contribute to the water-leaving radiance. Heavily polluted continental 
aerosols and sand storms also frequently impact coastal areas and make 
the retrieval of water constituents from satellite measurements difficult. 

In order to retrieve information about water constituents from sat
ellite ocean color measurements, the contribution from the Earth’s at
mosphere (i.e., molecules, aerosols etc.) must be taken into account. 
Heritage atmospheric correction (AC) algorithms (Gordon and Wang, 
1994b; Gordon, 1997) used by the ocean color community, describe the 
radiance at wavelength λ measured by a satellite ocean color sensor at 
the top of the atmosphere (TOA) as: 

Lt(λ) = Lr(λ)+La(λ)+T(λ)Lg(λ)+ t(λ)Lwc(λ)+ t(λ)Lw(λ) (1)  

where Lt is the total radiance, Lr is the radiance contributed by molecular 
(Rayleigh) scattering (Gordon and Wang, 1992; Wang, 2002, 2005), La is 
the radiance contributed by aerosol scattering/absorption including 
aerosol-Rayleigh interactions, Lg is the radiance contributed by sunglint 
(Wang and Bailey, 2001), Lwc is the radiance contributed by surface 
whitecaps (Gordon and Wang, 1994a; Frouin et al., 1996; Stramska and 
Petelski, 2003), and Lw is the upward radiance in the water transmitted 
through the water-atmosphere interface, commonly referred as the 
water-leaving radiance. T and t are atmospheric direct and diffuse 
transmittances. The heritage AC algorithms evaluate each of the terms 
(i.e. Lr, La, Lg, and Lwc) carefully and remove them from Lt to produce Lw. 

Analyses based on Eq. (1) have been successfully applied to various 
ocean sensors to produce ocean color products with satisfactory results, 
especially in open ocean areas. However, due to the lack of accurate and 
efficient algorithms for radiative transfer simulations in a fully coupled 
atmosphere-ocean system, some underlying assumptions had to be made 
in Eq. (1). These assumptions work well for open ocean and weakly 
absorbing aerosol conditions, but become invalid in complex environ
mental conditions, such as coastal/inland water areas, polluted aerosols, 
etc. As a result, the quality of ocean color products derived from the 
heritage approach based on Eq. (1), is often less than satisfactory in 
coastal regions and sometimes yields unphysical negative water-leaving 
radiances. There are a number of reasons for this predicament including 
use of a pre-defined set of aerosol models, inadequate knowledge of bio- 
optical properties in the NIR, the assumed vertical structure, etc. 
(IOCCG, 2019). 

A coupled atmosphere-ocean radiative transfer model (RTM) with 
full consideration of multiple scattering effects and the interaction be
tween the atmosphere and ocean should be used for accurate simula
tions of satellite sensor measurements, and the inverse problem needs to 
be reformulated to be consistent with the forward modeling approach. 
Therefore, a new algorithmic approach is needed for optically-complex 
atmospheric and coastal conditions. Fan et al. (2017) developed a new 
AC algorithm for MODIS based on coupled atmosphere-ocean RT sim
ulations (Stamnes et al., 2018a) combined with multilayer neural net
works (MLNNs). This new AC algorithm completely resolved the 
negative water-leaving radiance issue and the validation of the algo
rithm showed significant improvement in blue and red bands when 
compared with the latest heritage algorithms, which included NIR 
water-leaving radiance corrections and use of SWIR bands to estimate 
the aerosol contribution to the signal. 

Although the Fan et al. (2017) AC algorithm focused on coastal areas, 
the forward/inverse modeling framework created should be applicable 
globally. Therefore, in this paper, we present the methodology and 
validation of a new global approach to AC as well as aerosol and water 
IOP retrievals. We use a coupled atmosphere-ocean RTM (Stamnes et al., 
2018a) to generate comprehensive global ocean color datasets. These 
simulated datasets are in turn used to train a machine learning based 
water IOP retrieval algorithm validated against in-situ measurements on 
a global scale. The new global AC and ocean IOP algorithms have been 
implemented in our multi-sensor data analysis platform, Ocean Color - 
Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART), which 
currently supports ocean color data retrievals from 11 satellite sensors 
including: SeaWiFS, Aqua/MODIS, SNPP/VIIRS, ISS/HICO, Landsat8/ 
OLI, DSCOVR/EPIC, Sentinel-2/MSI, Sentinel-3/OLCI, COMS/GOCI, 
GCOM-C/SGLI and FengYun-3D/MERSI. OC-SMART is available for 
download from the Light and Life Lab website (http://www.rtatmocn. 
com/oc-smart/) as a standalone Python package and also as a plugin 
that can be installed in ESA’s SNAP platform. 

2. Machine learning based AC and ocean IOP algorithms 

2.1. Brief description of forward radiative transfer model 

To simulate TOA radiances, we will not rely on Eq. (1), but instead 
solve the radiative transfer equation (RTE) for the diffuse radiance L(τ, 
u,ϕ)  

pertinent for the coupled atmosphere-water system. Here u is the cosine 
of the polar angle θ, ϕ is the azimuth angle, μ0 is the cosine of the solar 
zenith angle, ϖ(τ) = b(τ)/[a(τ) + b(τ)] is the single-scattering albedo, a 
(τ) is the absorption coefficient, b(τ) is the scattering coefficient, p(τ, 
u′,ϕ′;u,ϕ) is the scattering phase function, and F0 is the extraterrestrial 
solar irradiance. The differential vertical optical depth is given by dτ(z) 
= − [a(τ) + b(τ)]dz. 

We assume that the stratified atmosphere-water system can be 
adequately represented by two adjacent horizontal slabs across which 
the refractive index changes from its value in air to that in water. The 
numerical code AccuRT (Stamnes et al., 2018a) computes radiances at 
any optical depth, polar, and azimuth angle by solving Eq. (2) for each 
layer of the two slabs using the discrete-ordinate method to convert the 
integro-differential RTE into a system of coupled ordinary differential 
equations. The AccuRT method can be summarized as follows: 

u
dL(τ, u,ϕ)

dτ = L(τ, u,ϕ) −
ϖ(τ)
4π

∫ 2π

0
dϕ

′

∫ 1

− 1
du′p(τ, u′

,ϕ
′

; u,ϕ)L(τ, u′

,ϕ
′

)

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
multiple scattering

−
ϖ(τ)
4π p(τ, − μ0,ϕ0; u,ϕ)F0e− τ/μ0

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞
single scattering

.
(2)   
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1. Slab1 (air) and slab2 (water) are separated by a plane interface at 
which the refractive index changes from m1 in slab1 to m2 in slab2, 
where m2 depends on the wavelength.  

2. Each of the two slabs is divided into a sufficiently large number of 
homogeneous horizontal layers to adequately resolve the vertical 
variation in its IOPs.  

3. Fresnel’s equations for the reflectance and transmittance are applied 
at the air-water interface, in addition to the law of reflection and 
Snell’s Law to determine the magnitude and directions of the re
flected and refracted rays.  

4. Discrete-ordinate solutions to the RTE are computed for each layer in 
the two slabs. 

5. Finally, boundary conditions at the top of slab1 (TOA) and the bot
tom of slab2 (water column) are applied, in addition to radiance 
continuity conditions at layer interfaces within each of the two slabs. 

The air-water interface is assumed to be smooth in the simulations 
used to create the training data for the current version of OC-SMART. 
Use of a smooth air-water interface in this paper implies that the glint 
reflection will be strictly in the specular direction, but we consider only 
the diffuse part of the reflected light that has been subject to multiple 
scattering on its path from the surface to the TOA. We will refer to this 
contribution as ‘moderate’ sunglint. In other words, the part of the 
sunglint that is directly transmitted to the TOA, referred to as ‘strong’ 
sunglint, is not included in this treatment, but all orders of ‘skyglint’ (i.e. 
downward diffuse light specularly reflected by the air-water interface) 
are fully accounted for (see Ottaviani et al. (2008) for details). 

2.2. Overview of the machine learning methodology 

The methodology of the machine learning based AC algorithm, 
developed for MODIS and described in detail by Fan et al. (2017), is 
summarized here. The algorithm exploits the spectral similarity between 
the Rayleigh-corrected TOA radiance (Lrc = Lt − Lr) and the water- 
leaving radiance (Lw). A well-trained multilayer neural network is 
used to derive Lw from Lrc directly. Therefore, in contrast to heritage 
algorithms which tend to rely on accurate evaluation of the aerosol 
contribution to the radiance (La), our machine learning based AC algo
rithm is a spectral matching algorithm which does not depend on 
explicit evaluation of aerosol information. A secondary MLNN was also 
trained to derive spectral aerosol optical depths (AODs) from Lrc 
directly. The framework adopted to generate the MLNNs is shown in 
Fig. 1. In general, this framework can be applied generically, i.e. to any 
sensor with a suitable combination of bands. In particular, it is appli
cable to sensors, such as DSCOVR/EPIC, that do not have NIR or SWIR 
bands which are often required by heritage algorithms to estimate the 
aerosol contribution to the TOA sensor signal. The keys to the success of 
the machine learning based AC algorithm implemented in OC-SMART 

can be summarized as follows:  

• Extensive RT simulations from a coupled atmosphere-ocean RTM 
(Stamnes et al., 2018a) accurately accounts for multiple scattering 
and BRDF effects between the atmosphere and the ocean.  

• Flexible water IOP models and aerosol models are used in the RT 
simulations to create a comprehensive dataset of Lrc and Lw values 
that are representative of most water and aerosol conditions 
encountered globally.  

• Realistic input parameter distributions for the aerosol and water IOP 
models are obtained by analyzing level-3 global ocean color products 
from current ocean color sensors.  

• A one-step process is employed that uses spectral features from 
visible (VIS) and near infrared (NIR) wavelengths simultaneously.  

• The OC-SMART approach is capable of handling noise in the satellite 
measurements and it includes full consideration of the signal-to- 
noise ratio (SNR) characteristics of the sensor. 

This framework is used to develop a new AC algorithm that is 
applicable globally. However, a global application requires compre
hensive RT simulation datasets that are representative of different types 
of atmospheric, aerosol, and marine conditions in both open ocean and 
coastal areas. Therefore, careful modifications to our RT model simu
lations, the training datasets, and the training method have been made, 
which will be discussed in the following sections in some detail. 

2.3. Atmospheric profiles and aerosol models 

Fan et al. (2017) used the U.S. standard atmospheric profile for the 
simulation of molecular (Rayleigh) scattering and absorption by atmo
spheric gases. For the global application, we use the six atmospheric 
profiles, implemented in AccuRT, our coupled atmosphere-ocean RTM 
(Stamnes et al., 2018a), including U.S. standard, Mid-latitude sum
mer&winter, sub-arctic summer&winter and tropical models. These at
mospheric profiles are randomly selected for each RT simulation. A 
spectral band model (Kneizys et al., 1996) is used to compute the IOPs of 
atmospheric gas absorption and the relative spectral response functions 
appropriate for each sensor are used to compute the band-averaged 
values of the IOPs. The Rayleigh scattering phase function is given by 
(Stamnes et al., 2018a) 

pRay(cosΘ) =
3

3 + f
(
1+ fcos2 Θ

)
(3)  

where Θ is the scattering angle and f =
1− ρ
1+ρ. For air molecules the de

polarization factor (attributed to the anisotropy of the scatterer, see Eq. 
(63) in Stamnes and Stamnes (2016) for a definition) has the value ρ =
0.0286 at 500 nm (Bodhaine et al., 1999). 

Fig. 1. Framework employed to develop the AC and ocean IOP inversion algorithms using accurate and comprehensive RT simulation datasets and multilayer 
neural networks. 
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The aerosol models used to develop the machine learning based 
global AC algorithms were proposed by Ahmad et al. (2010) based on 
Aerosol Robotic Network (AERONET) observations (Holben et al., 
1998). The inherent optical properties (IOPs, i.e. absorption and scat
tering coefficients and the scattering phase functions) of the aerosol 
particles are computed from Mie scattering theory based on particle size 
distributions and refractive indices which vary with aerosol type and 
relative humidity (RH). These aerosol models are also used to generate 
aerosol radiance (La) look-up-tables (LUTs) for the heritage algorithm 
implemented in NASA’s SeaDAS platform. However, the Ahmad models 
include only weakly absorbing aerosols with single-scattering albedo 
(ϖ) larger than 0.94. Comparing the Ahmad models with the aerosol 
models in the OPAC 4.0b package (Koepke et al., 2015), we found that 
only continental clean and maritime clean aerosol can be represented by 
the Ahmad models, as is expected, because they were derived mainly 
from data obtained at open ocean AERONET stations. Only three coastal 
AERONET stations in Chesapeake Bay were included, where the aerosols 
are not heavily polluted. Therefore, the Ahmad models lack represen
tativeness in some coastal areas (Pahlevan et al., 2017a). In order to 
have a better representation of coastal areas that are often invaded by 
heavily polluted aerosols and sand storms, such as the East China Sea 
and the west coast of Africa, we have, in addition to the Ahmad aerosol 
models, incorporated the polluted Continental aerosol, the polluted 
Maritime aerosol, and the desert aerosol models, from the OPAC pack
age (Koepke et al., 2015), into our RT simulations. 

2.4. Flexible and comprehensive ocean IOP models 

The inherent optical properties (IOPs) of the open ocean and various 
types of coastal/inland waters are all different. However, the IOPs of the 
water, i.e., the total absorption coefficient at(λ) and the total scattering 
coefficient bt(λ), will generally have contributions from water itself and 
water constituents, including embedded particles (i.e. phytoplankton, 
detritus, minerals etc.), and colored dissolved organic matter (CDOM). 
For pure water, we use the absorption coefficient aw(λ) based on data 
published by Pope and Fry (1997) for wavelengths between 400 and 
700 nm, and by Kou et al. (1993) for wavelengths between 700 and 900 
nm. The scattering coefficient of water bw(λ) is based on data published 
by Smith and Baker (1981) and the Rayleigh scattering phase function 
(see Fig. 1 in supplementary material available online) is given by Eq. 
(3) with a depolarization factor of ρ = 0.039 for water. The sensor- 
specific relative spectral response functions were used to compute 
band-averaged absorption and scattering coefficients for pure water. 

The IOPs of the water constituents are usually derived from bio- 
optical models (BOMs). However, there is no single BOM capable of 
simulating the IOPs for all possible marine conditions over the global 
ocean including coastal areas. Therefore, multiple BOMs are needed to 
create a comprehensive and representative global water IOP dataset. We 
implemented three BOMs for our RT simulations: the modified GSM 
model (Fan et al., 2017; Garver and Siegel, 1997; Maritorena et al., 
2002), the modified CCRR model (Ruddick, 2010; Fan et al., 2016) and 
the MAG model (Morel et al. 2002a). Each of these three BOMs can 
simulate a wide range of water conditions and yet each is more repre
sentative of a certain water condition. The MAG model, adopted by 
NASA’s Ocean Biology Processing Group (OBPG), has been proven to 
work well for clear open ocean and chlorophyll-dominated waters. We 
have made significant modifications to the original GSM and CCRR 
models to increase their ability to be representative of a wider range of 
water conditions. The key modifications that we made to the ocean IOP 
models are:  

• We adopted 473 field measured hyper-spectral absorption spectra 
from IOCCG report 5 (IOCCG, 2006) to simulate the absorption by 
different types of phytoplankton, aph(λ). Fig. 1 in the supplementary 
material available online shows all these spectra normalized to 443 
nm.  

• The the spectral slope factor S describing the logarithmic decline of 
detrital and Gelbstoff absorption that controls spectral shape of the 
absorption of detritus and Gelbstoff, adg(λ), is not set to a fixed value, 
but selected randomly in the range 0.008–0.026, which is consistent 
with the field measurements published by Babin et al. (2003).  

• The η parameter that controls the spectral shape of the particulate 
backscattering, bbp(λ), is not fixed, but taken from a Gaussian 
random distribution with a mean value of − 1.0 and a standard de
viation of 0.6, which is consistent with the measurements published 
by Reynolds et al. (2016).  

• In the modified CCRR model, the γ parameter that controls the 
spectral shape of the attenuation of the non-algal particles (NAP), 
cNAP(λ), is selected randomly in the range 0.2–0.5, which is consis
tent with the measurements published by Babin et al. (2003).  

• In the modified CCRR model, the η parameter that controls the 
spectral shape of the absorption of non-algal particles (NAP), 
aNAP(λ), is selected randomly in the range 0.005–0.02, which is 
consistent with the measurements published by Babin et al. (2003). 

All three BOMs were used to create a comprehensive global ocean 
IOP dataset. The MAG model was used to simulate clear open ocean 
water, the modified GSM model was used to simulate moderately turbid 
coastal water dominated by chlorophyll, detritus and Gelbstoff, while 
the modified CCRR model was used to simulate highly turbid sediment- 
dominated water. We should emphasize that although we designated 
one model for different types of water, this designation does not mean 
that the selected BOM works well for only that type of water. In fact, 
each of the three ocean IOP models is capable of simulating a wide range 
of water conditions, and the combined ocean IOP dataset has a smooth 
transition from clear water to highly turbid water. A detailed description 
of each BOM is provided in the supplementary material available online. 

2.5. Input data selection for radiative transfer simulations 

To generate the large comprehensive global dataset of simulated 
radiances required to train the machine learning algorithms, our 
coupled RTM (AccuRT, Stamnes et al. (2018a)) needs input parameters 
that define the aerosol and water IOPs, such as aerosol optical depth 
(AOD), aerosol fine mode fraction (fa), relative humidity (RH), CHL or 
aph443, adg443, bbp443, TSM etc. To address the lack of a set of simul
taneous measurements of aerosol and water IOPs from a variety of lo
cations on a global scale, Fan et al. (2017) suggested using current ocean 
color products for this purpose, and we have adopted the same approach 
here to create a comprehensive global synthetic IOP dataset. 

To this end we did a statistical study of the 8-day averaged 4 km 
spatial resolution global MODIS Aqua L3 data from the years 
2011–2015. Quality control was used to ensure data quality, and pixels 
with negative water-leaving radiances in any wavelength channel were 
excluded. We randomly selected 200,000 combinations (100,000 from 
coastal areas and 100,000 from open ocean areas) of aerosol optical 
depth at 869 nm (AOT_869), chlorophyll_a concentration (CHL), ab
sorption by chlorophyll at 443 nm (aph_443), absorption by detritus and 
Gelbstoff at 443 nm (adg_443) and particulate backscattering at 443 nm 
(bbp_443) from the L3 products over five coastal areas (East and West 
coast of the US, Baltic Sea and English channel, Persian Gulf and Arabian 
Sea, Yellow Sea, and East China Sea) and four open ocean areas (middle 
of North and South Pacific Ocean and the middle of North and South 
Atlantic Ocean). As shown in Fig. 2, the red boxes represent the selected 
coastal areas and the blue boxes represent the open ocean areas. The 
data from coastal areas were used as input to the modified GSM model 
and data from the open ocean areas were used as input to the MAG 
model. The input data for the modified CCRR model are generated from 
a regression model built from field measurements taken in European 
coastal waters (Ruddick, 2010). A total of 100,000 combinations of CHL, 
CDOM, and TSM were generated, and the distribution of the input data 
is shown in the middle panel of Fig. 3. 
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It should be emphasized that MODIS retrievals were not used for 
training. The few parameters we selected from the MODIS L3 data 
simply provided a plausible range of observed values. The other input 
parameters required by the RTM include atmospheric profiles, fa, RH, 
the spectral chlorophyll-specific absorption coefficient aCHL*(λ), the 
spectral slope factor S of CDOM or adg, the η parameter for bbp, the γ and 
η parameters for NAP are all selected randomly from a uniform or 
Gaussian distribution that is consistent with published field measure
ments. Secondly, we used L3 data at a single wavelength each (i.e. 869 
nm for AOD and 443 nm for ocean IOPs). The spectral shape of the 
aerosol and ocean IOPs are determined by all the other randomly 
selected parameters. Therefore, the spectral dependence of the aerosol 
or ocean IOPs we used for RT simulations differs significantly from those 
employed in the heritage algorithms used to obtain the L3 data. In 
another words, what we extracted from the L3 dataset is merely a data 
distribution at some reference wavelengths, as shown in the left and 
middle panels of Fig. 3 (i.e. for water IOPs) and the right panel (i.e. for 
AOT_869), which makes the RT simulations more realistic and consis
tent with current knowledge. 

The geometry angles, i.e. solar zenith angle (θ0), sensor zenith angle 
(θ), and relative azimuth angle (Δϕ), are also selected randomly from a 
uniform distribution. In our previous study Fan et al. (2017), we selected 
one set of {θ0, θ, Δϕ} angles for each combination of atmosphere- 

aerosol-ocean IOPs in our RT simulations and generated a training 
dataset consisting of 100,000 simulated TOA and water-leaving radi
ance values. The MLNNs trained by this dataset worked well for MODIS 
over coastal areas. However, for a global application, we have incor
porated two more ocean IOP models to simulate IOPs for open ocean and 
extremely turbid waters, which significantly increased the variety of the 
ocean IOPs. Hence, one set of geometry angles for each combination of 
atmosphere-aerosol-ocean IOPs is not sufficient to represent the angular 
distribution of the light field at the TOA and at the ocean surface. 
Therefore, in addition to the set {θ0 = 0, θ = 0, Δϕ = 0} that was used to 
compute the normalized water-leaving radiance:  

• first, we randomly selected one θ0 value in the range [0∘, 75∘] for each 
combination of atmosphere-aerosol-ocean IOPs;  

• then the viewing angle θ was evenly divided into 7 sub-intervals in 
the range [0∘, 70∘] (i.e. [0∘, 10∘], [10∘, 20∘] ⋯ [60∘, 70∘]) and we 
randomly selected 7 viewing angles θ, one from each sub-interval;  

• finally, the azimuth difference Δϕ was evenly divided into 6 sub- 
intervals in the range [0∘, 180∘] (i.e. [0∘, 30∘], [30∘, 60∘] ⋯ [150∘, 
180∘]) and for each selected θ angle, we randomly selected 6 Δϕ 
values, one from each sub-interval. 

As a result, a total of 43 geometry angles were selected for each 

Fig. 2. Selected coastal (red boxes) and open ocean (blue boxes) areas for statistical analysis of the L3 products. The green and red dots indicate the location of in-situ 
measurements used for validation in Section 4, where the green dots indicates the location of MOBY and SeaBASS measurements and the red dots indicates the 
location of the AERONET-OC stations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Left: distribution of aph(443), adg(443), bbp(443), and CHL used in the modified GSM and MAG models. Middle: distribution of CHL, CDOM, and TSM used in 
the modified CCRR model (Ruddick, 2010). Right: distribution of AOD (869 nm) used in the aerosol models. 
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combination of atmosphere-aerosol-ocean IOPs. Then, a dataset con
sisting of a total number of 3 × (7 × 6 + 1) × 100,000 = 12,900,000 
simulated TOA and water-leaving radiance values was created to train 
the MLNNs for the global AC algorithm. The increased number of ge
ometry angles significantly increased the stability and robustness of the 
trained MLNN, because the 43 geometry angles represent the bidirec
tional reflectance distribution function (BRDF) of the atmosphere or 
ocean reasonably well, which significantly increased the information 
content that the MLNN can learn. Our RTM for the coupled atmosphere- 
ocean system (Stamnes et al., 2018a) has the ability to provide output 
for all geometry angles at once for each input of atmosphere-aerosol- 
ocean IOPs. Therefore, the increase of time needed to run the RT sim
ulations is negligible. 

2.6. Training of the multilayer neural networks 

The multilayer neural network (MLNN) or multilayer perceptron 
(MLP) is a feedforward artificial neural network that can be used as a 
universal function approximator (Cybenko, 1989). In our case, the 
MLNN is used to link Rayleigh-corrected TOA radiances (Lrc) with 
normalized remote sensing reflectances (Rrs = nLw/Ed

0+, where nLw is the 
normalized water-leaving radiance and Ed

0+ is the downward irradiance 
just above the ocean surface). A separate MLNN is used to link Lrc values 
directly to aerosol optical depths (AODs). The MLNN learns how to 
relate spectral Lrc and Rrs (or AOD) values from a RT simulation dataset 
through a supervised learning (also called training) process by mini
mizing the difference, also known as the cost function, between the 
prediction of the MLNN and the RT simulation. 

Neural network training algorithms are available in many machine 
learning packages, such as MATLAB (2018), Scikit-Learn (Pedregosa 
et al., 2011), TensorFlow (Abadi et al., 2015) and others. We used the 
publicly available greatest descent algorithm (GDA) in Scikit-Learn, 
which employs an adaptive learning rate (Amari et al., 2000) to 
reduce the training time. However, for the same neural network struc
ture, the precision of the GDA is slightly inferior to that of the 
Levenberg-Marquardt (LM) algorithm that was used to train the MLNN 
for MODIS with a 50×25×15 structure by Fan et al. (2017). With the 
GDA we had to increase the number of neurons in each layer to reach the 
same accuracy. In addition, the new global training dataset also signif
icantly increased the diversity of the training data, which requires larger 
neural networks to achieve acceptable performance. Therefore, for the 
global AC algorithm, we redesigned the structure of the AOD MLNN and 
the Rrs MLNN with 100, 75, and 50 neurons in the hidden layers. The 
size of the new MLNNs is much larger than those developed for coastal 
waters only by Fan et al. (2017), but it is still relatively small compared 
to the size of the training dataset. Therefore, it is very unlikely to lead to 
over-fitting. In addition, we also used L2 regularization (Neumaier, 
1998) and an early stopping technique (Prechelt, 1997) in the training 
process to minimize the possibility of over-fitting. 

In addition to the AOD and Rrs MLNNs described by Fan et al. (2017), 
we also trained an auto-associative neural network (aaNN) to identify 
pixels that are out of the scope of our training dataset. The inputs to the 
aaNN are sun-sensor geometry angles, relative humidity (RH) and 
spectral Lrc values (e.g. there are 13 inputs for MODIS, 3 geometry an
gles, 1 RH value, and 9 spectral bands), and the output of the aaNN is the 
spectral Lrc values. After being trained by the same training dataset, the 
aaNN works as a duplicator. If the input data are within the range of the 
training dataset and the shape of the spectral Lrc is very close to that of 
the training dataset, then the aaNN output will duplicate the input 
spectral Lrc with a very high precision. But if some of the input data are 
out of the range or the shape of the spectral Lrc is not included in the 
training dataset, then the output from the aaNN deviates significantly 
from the input spectral Lrc, i.e. the band-averaged percentage difference 
is larger than 5%. Therefore, by comparing the output from aaNN with 
the input spectral Lrc, we can identify pixels that are out of scope of the 
training dataset. This capability of the aaNN is due to the bottleneck 

layer in the neural network structure. 
The aaNN also has 3 hidden layers. The number of neurons in the first 

and third layers is set to equal the number of inputs. The second layer is 
the bottleneck layer with a much smaller number of neurons, and 
designed such that a well trained aaNN is able to duplicate only input 
data available in the training dataset. For our purpose, we have found 
that setting the number of neurons in the bottleneck layer equal to half 
of the number of neurons in the input layer works well for identifying 
pixels with out of scope radiances. This structure (e.g. for MODIS the 
aaNN structure is 13×7×13) ensures that 99.5% of the data in the 
training dataset can be duplicated by the trained aaNN with very high 
precision (i.e. band-averaged deviation less than 0.1%). 

2.7. Global Ocean IOP retrieval algorithms 

The spectral behavior of the remote sensing reflectance, Rrs, is pri
marily determined by the water IOPs, i.e. absorption by phytoplankton 
(aph(λ)), absorption by detritus and Gelbstoff (adg(λ)), and particulate 
backscattering (bbp(λ)). Therefore, the water IOPs can be inferred from 
spectral Rrs data. Semi-analytical models (Lee et al., 2002; IOCCG, 2006; 
Smyth et al., 2006) are frequently used to infer water IOPs from Rrs data. 
These semi-analytical models are based on empirical relations linking 
Rrs data with water IOPs (IOCCG, 2006): 

Rrs(λ) = G(λ)
(

bb(λ)
a(λ) + bb(λ)

)

(4) 

Here bb(λ) and a(λ) are the water backscattering and absorption co
efficients, respectively. The function G(λ) is approximated by a poly
nomial with coefficients derived by fitting RT simulations or field 
measurements. However, due to the complexity of the water body, 
especially in coastal/inland water areas, several agents that scatter and 
absorb radiation (i.e. different types of algae, detritus, Gelbstoff, etc.) 
are present in the water body and they do not co-vary with each other. 
Hence, each contributes to the Rrs data independently. The empirical 
approach may be a good approximation in clear (open ocean) water 
areas, but as the water body becomes more complex in coastal and 
inland water areas, this simple equation is inadequate to represent the 
relation between Rrs data and water IOPs. Instead, a coupled 
atmosphere-ocean RTM (such as AccuRT Stamnes et al. (2018a)) was 
used here to accurately link Rrs data with water IOPs. 

As a default ocean IOP algorithm in NASA’s SeaDAS software pack
age, the GIOP algorithm (Werdell et al., 2013) is designed as a general 
framework for relating the spectral distribution of Rrs(λ) to the ocean 
IOPs. However, in order to determine the function G(λ), the GIOP al
gorithm relies on Rrs(λ) values derived from an approximate f/Q method 
to deal with bidirectional effects, and the eigenvectors (i.e. the spectral 
shape) for aph(λ), adg(λ), and bbp(λ) are fixed in the default configuration 
of the algorithm. Although the GIOP algorithm provides the option to 
input a set of user defined eigenvectors, it still requires a priori knowl
edge from the user to select the eigenvectors. This requirement is not 
suitable for operational use. 

Machine learning algorithms have also been proposed to retrieve 
water IOPs from Rrs data, and some use neural networks to improve the 
estimation of the function G(λ) in Eq. (4) (Chen et al., 2014; Li et al., 
2019). Ioannou et al. (2011) proposed a neural network algorithm to 
derive total absorption (a) and total backscattering (bb) coefficients in 
addition to aph and adg. However, the algorithm was designed to retrieve 
water IOPs only at 442 nm and its application to satellite ocean color 
sensor retrievals was not validated. 

In contrast, our comprehensive global synthetic dataset provides an 
accurate link between Rrs data and water IOPs. Our input dataset in
cludes a variety of different water IOPs (300,000 cases to be exact) 
generated from several water BOMs (see Section 2.4), and is therefore 
expected to be representative of most realistic water conditions. To infer 
water IOPs from Rrs data, we propose a more direct approach. We again 
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employ machine learning techniques to directly infer 3 spectral water 
IOPs (i.e. aph(λ), adg(λ) and bbp(λ)) from the satellite retrieved spectral 
Rrs data, at the same set of wavelengths as the input Rrs data up to 700 
nm (see Table 1 for details). To ensure a smooth transition between 
different water types, a single multilayer neural network (MLNN) is 
preferred for each water IOP. Therefore, three separate MLNNs (i.e. 
aph_MLNN, adg_MLNN and bbp_MLNN) were trained from the simu
lated dataset and each will retrieve the corresponding spectral water IOP 
from the spectral Rrs(λ) data retrieved by the Rrs(λ) MLNN as discussed in 
Section 2.6. These machine learning based water IOP algorithms have 
been validated against field measurements using SeaWiFS data and they 
show significant improvement when compared with the GIOP algo
rithm, as demonstrated in Section 4.2. 

3. Ocean color - simultaneous marine and aerosol retrieval tool 

The machine learning based AC and ocean IOP retrieval algorithms 
are implemented in our multi-sensor data analysis platform, Ocean 
Color - Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART). 
Currently OC-SMART supports ocean color data retrievals from 11 
multi-spectral and hyper-sepctral sensors onboard satellites operated by 
the National Aeronautics and Space Administration (NASA), the Na
tional Oceanic and Atmospheric Administration (NOAA), the European 
Space Agency (ESA), the Japan Aerospace Exploration Agency (JAXA), 
the Korea Institute of Ocean Science and Technology (KIOST), and the 
China Meteorological Administration (CMA), which include: SeaStar/ 
SeaWiFS, MODIS/Aqua, SNPP/VIIRS, ISS/HICO, Landsat8/OLI, 
DSCOVR/EPIC, Sentinel-2/MSI, Sentinel-3/OLCI, GCOM-C/SGLI, 
COMS/GOCI and FengYun-3D/MERSI. Some characteristics of the sup
ported sensors are provided in Table 1. The machine learning based AC 

algorithm implemented in OC-SMART is applicable to any combination 
of suitable spectral bands. Hence, OC-SMART can easily be modified to 
support future satellite missions, such as the Plankton, Aerosol, Cloud, 
ocean Ecosystem (PACE) mission. 

A flowchart of the satellite image processing chain in OC-SMART is 
shown in Fig. 4. The processing described in the following sections were 
applied to satellite images obtained by the sensors supported by OC- 
SMART. 

3.1. Land/water mask 

Each pixel in a satellite image was first classified as land or water 
based on the geolocation (i.e. latitude and longitude). If the land/water 
mask is provided with the level 1b data, such as for Sentinel-3/OLCI and 
GCOM-C/SGLI, then these land/water masks were used in OC-SMART. If 
the land/water mask was not included in the sensor level 1b data, OC- 
SMART will run a land/water classification algorithm implemented in 
the code. Several land/water databases were implemented in OC- 
SMART. The Global Self-consistent, Hierarchical, High-resolution Ge
ography (GSHHG) database (Wessel and Smith, 1996) was used to 
classify land and water pixels for sensors with lower spatial resolution, i. 
e. footprint size less than 200 m at nadir direction, and the Global 
Surface Water (GSW) database (Pekel et al., 2016) was used for high 
spatial resolution sensors, such as Landsat8/OLI, Sentinel-2/MSI and 
ISS/HICO. COMS/GOCI is onboard a geostationary satellite. Therefore, 
a land/water database generated by the Korea Ocean Satellite Center 
(KOSC) was used to classify land and water pixels for GOCI images. 

3.2. Conversion of TOA radiance to reflectance 

The satellite-measured radiance L was converted to a bidirectional 
reflectance distribution function (BRDF) defined by: ρ = L/(F0 ⋅ μ0) in 
units sr− 1 where F0 is the solar irradiance and μ0 is the cosine of the solar 
zenith angle. This definition is different from the conventional use of a 
dimensionless bidirectional reflection factor (BRF) defined as ρ′ = π ⋅ L/ 
(F0 ⋅ μ0) by a factor of π. The BRF is defined such that it yields the albedo 
if the radiance distribution were to be isotropic, which is far from the 
case for the radiation field in the Earth atmosphere-ocean system. The 
factor π may lead to confusion because the BRF can be larger than 1 (e.g. 
near the sunglint region), but integration of the cosine-weighted radi
ance over the entire upper hemisphere accurately yields the reflected 
energy. 

3.3. Vicarious calibration of TOA reflectance 

The purpose of the vicarious calibration is to reduce the systematic 
bias in the retrieved water-leaving radiance (Lw) when compared with 
high quality in-situ measurements. A set of vicarious gain factors (also 
called g-factors) were applied to the TOA reflectance in addition to the 
sensor radiometric calibration. The derivation of the g-factors is 
described in some detail in several papers (Franz et al., 2007; Werdell 
et al., 2007; Bailey et al., 2008; Mélin and Zibordi, 2010). The g-factors 
generally have a difference smaller than 1% when derived from different 
in-situ data sources (eg. MOBY, NOMAD, AERONET-OC etc.). Therefore, 
in the current version of OC-SMART, the g-factors were set to be unity (i. 
e. 1.0) or if available, to the ones derived for heritage algorithms, such as 
the ones implemented in NASA’s SeaDAS platform. Although the g-fac
tors derived for the heritage algorithms may be imperfect when applied 
to OC-SMART, we have found that they can indeed help reduce sys
tematic bias in Lw retrievals. A dedicated vicarious calibration designed 
for the neural network approach adopted in OC-SMART will be devel
oped and implemented in future versions. 

3.4. Correction for atmospheric gas transmittance 

Most of the spectral bands used to derive ocean color products are 

Table 1 
Details of the 11 sensors supported by OC-SMART.  

Sensor Spectral Bandsa [nm] Resolution Level 1B/1C Data 
Source 

SeaStar/ 
SeaWiFS 

412, 443, 490, 510, 555, 670, 
765, 865 

1 km NASA OBPG 
OceanColor 
Websiteb 

Aqua/ 
MODIS 

412, 443, 488, 531, 547, 667, 
678, 748, 869 

1 km NASA LAADS DAAC 

SNPP/VIIRS 410, 443, 486, 551, 671, 745, 
862 

750 m NASA LAADS DAAC 

ISS/HICO 78 bandsc in 400–900 nm 
with 5.7 nm spectral 
resolution 

90 m NASA OBPG 
OceanColor Website 

Landsat8/ 
OLI 

443, 482, 561, 665, 865 30 m U.S. Geological 
Survey(USGS) 
archives 

DSCOVR/ 
EPIC 

388, 443, 551, 680, 779, 865 10 km NASA ASDC DAAC 

Sentinel-2A/ 
MSI 

443, 492, 560, 665, 704, 740, 
783, 835, 865 

60 md ESA Copernicus 
Open Access 

Sentinel-2B/ 
MSI 

442, 492, 559, 665, 704, 739, 
780, 835, 864 

60 md ESA Copernicus 
Open Access 

Sentinel-3/ 
OLCI 

400, 412, 443, 490, 510, 560, 
620, 665, 674, 681, 709, 754, 
779, 865, 885 

300 m ESA Copernicus 
Open Access 

GCOM-C/ 
SGLI 

380, 412, 443, 490, 530, 565, 
672, 763, 867 

1 km JAXA Globe Portal 
System 

COMS/GOCI 412, 443, 490, 555, 660, 680, 
745, 865 

500 m Korean Ocean 
Satellite Center 
(KOSC) 

FengYun- 
3D/MERSI 

412, 443, 490, 555, 670, 709, 
746, 865 

1 km FengYun Satellite 
Data Center  

a Only the spectral bands required by OC-SMART are listed. 
b NASA’s OBPG OceanColor Website provides SeaWiFS level 1A data, which 

need to be processed by NASA’s SeaDAS software to generate level 1B data. 
c Spectral bands that are strongly affected by water vapor and oxygen ab

sorption (i.e. around 725, 765 and 825 nm) were excluded. 
d All bands aggregated to 60 m spatial resolution. 
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located in atmospheric window regions where the impact of atmo
spheric gas absorption is minimal. However, in the UV and visible 
spectral range, ozone has a continuum absorption that must be cor
rected. OC-SMART uses real time ozone data derived from Aura/OMI to 
estimate the diffuse transmittance due to ozone absorption. Nitrogen 
dioxide (NO2) also accounts for some atmospheric absorption in the 
visible range, mainly in the blue part of the spectrum (Ahmad et al., 
2007). OC-SMART currently uses climatology NO2 data derived by the 
NASA Ocean Biology Processing Group (OBPG) to correct for the NO2 
transmittance. Oxygen absorption (O2) is also taken into account in OC- 
SMART for sensors, such as SeaWiFS and SGLI, that have spectral bands 
located in the oxygen A-band (i.e. between 759 and 770 nm). The sensor 
relative spectral response functions are used to compute the band- 
averaged absorption coefficient for the atmospheric gases. The diffuse 
transmittance along the solar (downward) and sensor viewing (upward) 
directions were computed as: 

ts
g(λ) = exp[ − τ(λ)/cos(θ0) ] (5)  

tv
g(λ) = exp[ − τ(λ)/cos(θ) ] (6)  

where τ is the optical depth of the atmospheric gas (e.g. ozone or NO2), 
θ0 is the solar zenith angle, and θ is the sensor zenith angle. Spectral 
bands that are strongly affected by water vapor absorption are currently 
excluded by OC-SMART (e.g. 725 nm and 825 nm in HICO). 

3.5. Correction of whitecap reflectance 

Whitecaps consist of foam-like material formed by breaking waves at 
the ocean surface. Observational data show that the amount of white
caps can be related to the wind speed (Monahan and Muircheartaigh, 
1980). In OC-SMART we have adopted the method described by 
Stramska and Petelski (2003) to compute the fractional area covered by 
whitecaps and the wavelength dependence of the whitecap reflectance is 
adopted from Frouin et al. (1996). The near real time surface wind speed 
data used to estimate the whitecap fraction are obtained from the Na
tional Center for Environmental Prediction (NCEP) data archive avail
able on NASA’s OBPG Ocean Color website. 

Fig. 4. Flow chart of the OC-SMART satellite image processing chain. F0 is the solar irradiance corrected for Earth-sun distance, μ0 is the cosine of the solar zenith 
angle, Vgain is the vicarious calibration factor, tg

s and tg
v are the downward and upward diffuse transmittances, ρwc is the whitecap reflectance, ρr is the Rayleigh 

reflectance corrected for real time sea surface wind speed and sea surface pressure and ε =
max(ρ(412) ,ρ(555) ,ρ(670) ,ρ(865) )
min(ρ(412) ,ρ(555) ,ρ(670) ,ρ(865) ) . 
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3.6. Correction of Rayleigh reflectance 

The reflectance due to pure Rayleigh scattering is estimated from 
pre-generated look up tables (LUTs) based on geometry angles, atmo
spheric pressure (Wang, 2005), and surface wind speed for each pixel 
and then removed from the TOA reflectance after the correction for 
atmospheric gas absorption and whitecap reflectance. Use of the 
Rayleigh-corrected radiance ρrc to derive the ocean color products is not 
strictly necessary, and should not be used for large solar zenith angles, as 
discussed in Section 6.2. However, in the current version of OC-SMART, 
we use ρrc because it increases the sensitivity of the algorithm and allows 
for a clean comparison with results derived from heritage algorithms 
since exactly the same TOA reflectance input is used in OC-SMART as in, 
for example, the NASA SeaDAS platform. 

3.7. Cloud mask 

Cloud contaminated pixels need to be identified before the AC al
gorithm can be applied. The standard cloud mask algorithm (STDCM, 
Patt et al. (2003)) in SeaDAS for ocean color sensors is a threshold 
method based on use of a single NIR band (e.g. 865 nm). The pixel is 
classified as cloudy if ρrc(865) > 0.027 (Patt et al., 2003). This algorithm 
works quite well over open ocean areas, but it is sensitive enough to be 
incorrectly triggered by highly scattering turbid water, by moderately 
high concentrations of aerosols or by increased Rayleigh scattering at 
high solar zenith angles (Nordkvist et al., 2009; Banks and Mélin, 2015). 
A number of studies, including Wang and Shi (2006) and Nordkvist et al. 
(2009), have been conducted to address this issue. Banks and Mélin 
(2015) showed that improved cloud screening results were obtained by 
using the method proposed by Nordkvist et al. (2009) (N09CM). 
Therefore, this method is currently adopted in OC-SMART. The N09CM 
algorithm identifies a pixel as cloudy when ρrc(865) > 0.027 and ε =

max(ρrc(412) ,ρrc(555) ,ρrc(670) ,ρrc(865) )
min(ρrc(412) ,ρrc(555) ,ρrc(670) ,ρrc(865) ) < 2.5. In Section 6.3 we discuss 

developments of a threshold-free, machine learning based cloud mask 
that will be included in upcoming versions of OC-SMART. 

3.8. Sunglint correction 

In OC-SMART, the sunglint is corrected using a machine learning 
method which is included implicitly in the training of the Rrs MLNN. As 
described in Section 2.1, in our training dataset, we have included 
simulation cases for ‘skyglint’ and ‘moderate’ sunglint. Therefore, the 
trained MLNN has learned to deal with sunglint and appears to be 
capable of retrieving accurate ocean color products from moderate 
sunglint areas, although a more comprehensive study is needed to assess 
the performance of OC-SMART in the presence of sunglint. Strong sun
glint will trigger the N09CM cloud mask algorithm to mask the pixel as 
cloud. Therefore, OC-SMART does not utilize a specific sunglint algo
rithm, but relies on the cloud mask algorithm to identify areas with 
strong sunglint.Fig. 5 shows one example of CHL retrievals from a 
Sentinel-3/OLCI image with strong sunglint contamination obtained on 
April 3, 2017. The purple color in panel (c) shows the strong sunglint 
area that was masked by NASA’s SeaDAS sunglint algorithm. The 
retrieval from OC-SMART, i.e. panel (b), shows no residue of the sun
glint pattern in the weak to moderate sunglint areas. However, areas 
with strong sunglint, i.e. the white areas in panel (b), masked as cloud by 
the N09CM cloud mask algorithm, are unretrievable by OC-SMART. 

3.9. Application of the machine learning algorithms 

After carrying out the pixel identification and pre-processing 
described in the previous sections, one may input the ρrc spectra, 
solar-sensor geometry angles and some ancillary data (e.g. relative hu
midity) to the trained Rrs MLNN and AOD MLNN to derive the spectral 
normalized Rrs values up to 800 nm and spectral AOD values up to 900 
nm. Then the retrieved spectral normalized Rrs values are input to the 
ocean IOP MLNNs (i.e. aph_MLNN, adg_MLNN and bbp_MLNN, see 

Fig. 5. Comparison of CHL retrievals from a OLCI image obtained on April 3, 2017. (a) OLCI RGB image; (b) CHL retrieved by OC-SMART; (c) CHL retrieved by NASA 
SeaDAS. The purple color in (c) indicates the area contaminated with strong sunglint, and white color in panels (b) and (c) indicates cloud mask results. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Section 2.7) to retrieve spectral water IOPs up to 700 nm, including 
aph(λ), adg(λ), and bbp(λ). A trained auto associative neural network 
(aaNN) is used to identify pixels that are out of the scope of the training 
dataset and establish quality flags. The input and output parameters for 
each MLNN are listed below:  

1. aaNN  

• Input: cos(θ0), cos(θ), cos(Δϕ), log10[ρrc(λi)], log10(RH).  
• Output: ρrc(λi) and out of scope quality flags.  

2. AOD MLNN  

• Input: cos(θ0), cos(θ), cos(Δϕ), log10[ρrc(λi)], log10(RH).  
• Output: AOD(λi).  

3. Rrs MLNN  

• Input: cos(θ0), cos(θ), cos(Δϕ), log10[ρrc(λi)].  
• Output: normalized Rrs(λrrs).  

4. aph MLNN, adg MLNN and bbp MLNN  

• Input: normalized Rrs(λrrs).  
• Output: aph(λiop), adg(λiop) and bbp(λiop). 

Note that λi denotes the spectral bands listed in Table 1, and λrrs 
denotes spectral bands at wavelengths shorter than 800 nm. The Rrs 
retrievals at wavelengths longer than 800 nm have relatively larger er
rors and are therefore excluded. λiop denotes spectral bands at wave
lengths shorter than 700 nm due to limitations in the field measurements 
used to construct the ocean IOP models, i.e. the measured chlorophyll 
absorption data are available only for wavelengths shorter than 700 nm. 
The out of scope pixels are flagged by calculating the mean percentage 
difference between the input ρrc(λi) and the aaNN output. If the mean 
percentage difference is larger than 6%, the pixel is flagged as out of 
scope. The 6% criterion is based on the 3-sigma rule of the noise level (i. 
e. 2%) that we added to the TOA reflectance in the training dataset. 

3.10. Correction for bidirectional effects in remote sensing reflectance 

The water-leaving radiance (Lw) and remote sensing reflectance (Rrs) 
is anisotropic due primarily to the asymmetry of the scattering phase 
function of the particles embedded in the water. The ocean color sensors 
on board remote sensing satellite platforms take measurement at a 
specific sun-sensor geometry. Therefore, bidirectional effects must be 
accounted for in order to derive the normalized remote sensing reflec
tance, nRrs, which is used in many ocean color algorithms to derive in- 
water constituents. The heritage algorithms employ the method adop
ted by OBPG (Morel et al. 2002b), denoted as the f/Q method, which 
works well in open ocean areas, but is less accurate in complex coastal 
waters (Voss et al., 2007; Gleason et al., 2012; Fan et al., 2016). With a 
coupled atmosphere-ocean RT model, the normalized nRrs can be 
computed accurately, without using the approximate f/Q method as 
reported previously (Fan et al., 2016, 2017). Our coupled atmosphere- 
ocean RTM (AccuRT, Stamnes et al. (2018a)) produces Rrs values at 
randomly selected sun-sensor geometry angles as well as in the nadir 
direction as explained in Section 2.5, and we trained the Rrs MLNN to 
derive normalized nRrs values directly from the ρrc values. Therefore, 
bidirectional effects are implicitly taken into account in the derived Rrs 
values. Hence, there is no need for any explicit BRDF correction. 

4. Results – Validation and application of OC-SMART 

The performance of OC-SMART is first tested using an independent 
synthetic testing dataset. Then the ocean color products retrieved by OC- 

SMART have been validated against in-situ measurements from MOBY 
(Clark et al., 2003), SeaBASS (Werdell et al., 2002), and AERONET-OC 
(Zibordi et al., 2009) for several sensors. Table 2 shows the details of 
the AERONET-OC stations used for validation. For SeaWiFS, MODIS, and 
VIIRS, we used the validation dataset processed by NASA OBPG (Bailey 
and Werdell, 2006), which includes in-situ Rrs data from MOBY, Sea
BASS, and AERONET-OC, and in-situ ocean IOP data (i.e. aph, adg, and 
bbp) from the SeaBASS database. These in-situ data are also used for the 
validation of NASA’s SeaDAS products. Therefore, a comparison with 
NASA SeaDAS results will be presented. For Sentinel-3/OLCI, Sentinel- 
2/MSI, and Landsat8/OLI, the validation is performed on in-situ mea
surements from AERONET-OC stations. The satellite retrieval extraction 
and quality control protocols generally follow those recommended by 
Bailey and Werdell (2006), which are also described in the supple
mentary material available online. A linear interpolation algorithm was 
applied to the in-situ measurements to account for the wavelength dif
ference with satellite sensors. The validation for COMS/GOCI, presented 
in Section 4.3, was performed against field measurements made both by 
Korea Institute of Ocean Science and Technology (KIOST) and against 
data obtained at the three AERONET-OC stations within the field of view 
of the GOCI sensor. The performance of the OC-SMART algorithms was 
assessed using the coefficient of determination (R2), the average per
centage difference (APD), the mean percentage bias, root-mean-square 
difference (RMSD), and the slope of the linear regression between in- 
situ data and satellite retrievals, which are defined as: 

R2 =

[
1
N
∑N

i=1

(
Xi − X

σX

)(
Yi − Y

σY

)]2

(7)  

APD [%] =
1
N
∑N

i=1

⃒
⃒
⃒
⃒
Xi − Yi

Yi

⃒
⃒
⃒
⃒× 100 (8)  

Bias [%] =
1
N
∑N

i=1

Xi − Yi

Yi
× 100 (9)  

Table 2 
Details of the AERONET–OC stations: location, time period selected for valida
tion, and number of match-up data used.  

Station Location Time Period Number of Match- 
ups 

Abu_Al_Bukhoosh 25.495 N, 53.146E 2004–2008 45 
ARIAKE_TOWER 33.104 N, 130.272E 2018 26 
Blyth_NOAH 55.146 N, 1.421 W 2016–2017 2 
COVE_SEAPRISM 36.900 N, 75.710 W 2006–2015 111 
Gageocho_Station 33.942 N, 124.593E 2011–2012 28 
Galata_Platform 43.045 N, 28.193E 2014–2018 741 
Gloria 44.600 N, 29.360E 2011–2018 919 
GOT_Seaprism 9.286 N, 101.412E 2012–2016 23 
Gustav_Dalen_Tower 58.594 N, 17.467E 2005–2018 761 
Helsinki_Lighthouse 59.949 N, 24.926E 2006–2017 941 
Ieodo_Station 32.123 N, 125.182E 2013–2018 63 
Irbe_Lighthouse 57.751 N, 21.723E 2018 6 
Lake_Erie 41.826 N, 83.194 W 2016–2018 32 
Lake_Okeechobee 26.902 N, 80.789 W 2018 18 
LISCO 40.955 N, 73.342 W 2009–2018 198 
Lucinda 18.520S, 146.386E 2010–2018 143 
MVCO 41.300 N, 70.567 W 2004–2018 798 
Palgrunden 58.755 N, 13.152E 2008–2018 492 
Socheongcho 7.423 N, 124.738E 2016–2018 171 
South_Greenbay 44.596 N, 87.951 W 2018 22 
Thornton_C-power 51.533 N, 2.955E 2015–2018 205 
USC_SEAPRISM 33.564 N, 118.118 

W 
2012–2018 863 

Venice 45.314 N, 12.508E 2001–2018 2897 
WaveCIS 28.867 N, 90.483 W 2010–2018 675 
Zeebrugge 51.362 N, 3.120E 2014 15  
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RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Xi − Yi)
2

N

√

(10)  

where X is the value of AOD or Rrs or ocean IOPs retrieved by the al
gorithms, Y is the corresponding in-situ measurement value, and σX and 
σY are the standard deviations. 

4.1. Validation of OC-SMART Rrs retrievals 

The green and red dots in Fig. 2 show the location of the in-situ 
measurements used to validate the Rrs products retrieved from Sea
WiFS (1997–2010), MODIS on Aqua (2002–2017), and VIIRS SNPP 
(2012–2017) images. The green dots show the location of MOBY and 
SeaBASS measurements and the red dots show the location of 
AERONET-OC stations. It is clear that the validation dataset covers 
global water conditions including open ocean, coastal water, and inland 
lakes. VIIRS images are available for only a short period of time. 
Therefore, the in-situ measurements used to validate VIIRS retrievals are 
mostly from MOBY and AERONET-OC stations. Figs. 6–8 show the 
validation results processed by OC-SMART and NASA SeaDAS v7.5.2 
default algorithms against SeaWiFS, MODIS on Aqua, and VIIRS images, 
respectively, and N indicates the number of validation data available for 
each band. It is clear that OC-SMART performs well for the entire global 
validation dataset for all the three sensors. 

One clear advantage of OC-SMART is the complete resolution of the 
negative Rrs issue that persists in the heritage algorithms, especially in 
blue and red bands. Detailed validation results are shown in Tables S1- 
S3 (see supplementary material available online). Compared with in-situ 
measurements, the Rrs retrievals obtained by OC-SMART are generally 
better than those obtained by SeaDAS, especially in blue and red bands. 
OC-SMART Rrs retrievals have higher R2 and lower APD and RMSD in 
almost all the bands, implying that the OC-SMART Rrs retrievals have 
better correlation with the in-situ measurements and smaller differ
ences. For SeaWiFS, OC-SMART reduced the APD by up to 25% at 412 
nm, up to 18% in 670 nm, and about 2–5% in the other bands when 
compared with SeaDAS results. For MODIS, OC-SMART retrievals are 
comparable with SeaDAS in the 443–547 nm spectral range, but still 
reduced the APD by 7% at 412 nm and 667 nm, and by 11% at 678 nm. 
For VIIRS, OC-SMART reduced APD by 26% at 410 nm and 3–7% in 
other bands. 

The higher APD in SeaDAS retrievals at blue and red bands are 
generally due to the negative values in the retrievals. Despite the fact 
that the match-up satellite images have passed the quality control pro
cedure, there are up to 10% of negative Rrs values in the blue band and 
up to 5% in the red bands in SeaDAS retrievals. The mean bias in SeaDAS 
retrievals is generally lower than for OC-SMART in the blue bands. 
However, this result is also due to the existence of negative values and 
therefore may not reflect the true performance of the SeaDAS algorithm. 
The slope of the linear regression between the in-situ data and the re
trievals from both algorithms also shows the deviation from the 1:1 line, 
which indicates a certain bias introduced by the algorithm. For OC- 
SMART, one reason for this deviation could be the imperfect g-factors 
used for vicarious calibration and we expect the bias to be reduced once 
we finalize the derivation of the g-factors. Another possible reason is that 
the ocean IOP models may not perfectly represent the type of water in 
the real world, implying that a certain bias may still exist in the training 
dataset. This bias may be reduced by filtering the training dataset using 
the distribution extracted from the in-situ data. 

The validation of the Rrs retrievals for Sentinel-3/OLCI, Sentinel- 
2A&B/MSI, and Landsat-8/OLI (Pahlevan et al., 2014) was performed 
using in-situ measurements from AERONET-OC stations, including 
Galata, Gloria, Gustav Dalen Tower, Helsinki Lighthouse, Ieodo, LISCO, 
Lucinda, MVCO, Palgrunden, Socheongcho, USC SEAPRISM, AAOT, and 
WaveCIS. Version 3 level 2.0 quality assured data were used for the 
validation. The extraction and quality control of the satellite retrievals 
generally followed recommendations provided by Bailey and Werdell 
(2006). However, the spatial resolution of these 3 sensors is relatively 
high (see Table 1). Therefore, to minimize the impact from the 
AERONET-OC stations (i.e. shadowing, higher reflectance from the 
physical structure of the stations, etc.), we modified the data extraction 
procedure as follows: for OLCI, the center pixel from the 3×3 box is 
excluded, and for MSI and OLI, the center 9 pixels (3×3) from the 5×5 
boxes are excluded. The detailed validation results are provided in 
Tables S4-S6 (see supplementary material available online). In general, 
the validation shows a good agreement between the OC-SMART re
trievals and the in-situ measurements and the performance of OC- 
SMART for OLCI, MSI, and OLI is consistent with the application to 
SeaWiFS, MODIS, and VIIRS, which are validated using a global ocean 
dataset. The relatively larger APD at 400 nm for OLCI is partially due to 
the linear extrapolation of the AERONET-OC measurement data. The 
relatively lower performance for Sentinel-2A&B/MSI and Landsat-8/OLI 

Fig. 6. Validation of Rrs retrievals from SeaWiFS images against in-situ measurements. Top: retrieval by OC-SMART, bottom: retrieval by NASA SeaDAS v7.5.2. Data 
below the red dashed line are negative values. The blue dashed line shows linear regression. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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could be partially due to the relatively low SNR of the sensor, which 
requires more pixels to be aggregated to meet the required accuracy in 
the retrievals, as suggested by Bailey and Werdell (2006); Pahlevan et al. 
(2017b). Therefore, averaging over a box of 5×5 pixels extracted from 
the satellite retrievals may not be sufficient for those two sensors. 

4.2. 4.Validation of OC-SMART ocean IOP retrievals 

The ocean IOP retrievals, i.e. aph, adg, and bbp, obtained by OC- 
SMART applied to SeaWiFS data were validated using the validation 
dataset processed by NASA OBPG, which includes in-situ IOP mea
surements compiled in the SeaBASS database. The number of in-situ IOP 
measurements was too low for the other sensors to make a meaningful 
validation. Fig. 9 shows the location of the in-situ ocean IOP 

measurements. The validation results are shown in Fig. 10–12 with 
details provided in Table S7 (see supplementary material available on
line). The ocean IOP retrievals obtained using the SeaDAS AC and GIOP 
algorithms are also provided for comparison. It is quite clear that OC- 
SMART significantly improved the retrieval of ocean IOPs in all bands 
compared with the results obtained using the SeaDAS AC and GIOP al
gorithms. For aph, OC-SMART increased the R2 correlation by a factor 
1.9–2.7 and reduced the APD by 80% - 260%. For adg, OC-SMART 
increased the R2 correlation by a factor 1.7–2.7 and reduced the APD 
by 90% - 300%. For bbp, OC-SMART increased the R2 correlation by up to 
a factor 4.4 and reduced the APD by about 4% on average. The im
provements of the ocean IOP retrievals provided by OC-SMART are due 
to the following two principal reasons: 

Fig. 7. Validation of Rrs retrievals from MODIS images against in-situ measurements. Top: retrieval by OC-SMART, bottom: retrieval by NASA SeaDAS v7.5.2. Data 
below the red dashed line are negative values. The blue dashed line shows linear regression. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 8. Validation of Rrs retrievals from VIIRS images against in-situ measurements. Top: retrieval by OC-SMART, bottom: retrieval by NASA SeaDAS v7.5.2. Data 
below the red dashed line are negative values. The blue dashed line shows linear regression. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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1. improved Rrs retrievals from our machine learning based global AC 
algorithm compared to the SeaDAS AC algorithm. 

2. a comprehensive ocean IOP dataset used to generate accurate radi
ative transfer simulations combined with powerful machine learning 
techniques. 

In fact, the negative Rrs retrievals produced by the heritage AC al
gorithm in SeaDAS have significantly reduced the data quality of ocean 
IOP retrievals derived from the GIOP algorithm. After excluding the 
cases with negative Rrs values, the performance of the GIOP algorithm 
also increased significantly, as shown in Table S7 (see supplementary 
material available online). However, the performance of the ocean IOP 
algorithms still needs to be improved, especially for bbp. Also, adg de
creases exponentially with wavelength and its value becomes relatively 
small at 670 nm, which makes retrieval difficult. 

4.3. Application to geostationary satellite data 

The Geostationary Ocean Color Imager (GOCI) is the first dedicated 
ocean color sensor deployed onboard a geostationary satellite. The GOCI 
sensor significantly increased the temporal resolution of ocean color 
products and facilitates studying the short-term variation of the marine 
ecosystem. However, the field of view of the GOCI sensor covers an area 
with complex marine conditions including clean oceanic water, turbid 
continental shelf water, highly dynamic coastal water due to strong tidal 
currents, extreme turbid estuary areas with total suspended matter 
(TSM) as high as 5000 [mg/L] (He et al., 2013), and several inland lakes. 
In the winter to spring season, polluted continental aerosols, fogs, and 
sandstorms are often observed in the area. The complexity of the at
mospheric and marine conditions requires accurate and reliable AC al
gorithms to ensure good data quality of the ocean color products. The 
current AC algorithm implemented in the GOCI Data Processing System 

Fig. 9. Location of the in-situ ocean IOP measurements used for validation of satellite OC retrievals produced by OC-SMART and the AC and GIOP algorithms 
available in SeaDAS v7.5.2. 

Fig. 10. Validation of the absorption by phytoplankton (aph) from SeaWiFS images against in-situ measurements. Top: retrieval by OC-SMART, bottom: retrieval by 
AC and GIOP algorithms available in NASA SeaDAS v7.5.2. The blue dashed line shows linear regression. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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(GDPS) developed by KIOST is a modified version of the heritage algo
rithm (Ahn et al., 2012), with an improved technique to estimate aerosol 
information (Ahn et al., 2016). OC-SMART has been modified to support 
the GOCI mission and the current machine learning based AC algorithm 
for GOCI will also be implemented in GDPS in the updated version. The 
machine learning based AC algorithm for GOCI-II will also be imple
mented in the GOCI-II data processing system. 

The Korea Institute of Ocean Science and Technology (KIOST) has 
conducted a large number of field campaigns in coastal and open ocean 
waters around Korea and obtained 421 in-situ above-water radiometric 
measurements since 2010. The remote-sensing reflectance, Rrs, was 
measured by ASD-FieldSpec and TriOS-RAMSES hyperspectral radiom
eters. Of the 421 samples, 337 spectra were discarded by the strict 
quality-control process recommended by Moon et al. (2012), which left 
84 samples for the match-up process and analysis. Of those 84 samples, 
most of the shipboard data were collected from highly to moderately 
turbid waters (Ahn et al., 2015). The location of the in-situ 

measurements is shown as red dots in Fig. 13. Three AERONET-OC 
stations (i.e. Socheongcho, Gageocho, and Ieodo) are located within 
the field of view of the GOCI sensor. A total of 130 quality-assured level 
2.0 measurements were selected from the 3 stations to validate the Rrs 
retrievals. The AERONET-OC measurements were linearly interpolated 
to the GOCI wavelengths for comparison with satellite retrievals. The 
location of the AERONET-OC stations is shown as red crosses in Fig. 13. 
The validation results of the Rrs values retrieved by OC-SMART and 
GDPS v2.0 are shown in Fig. 14 with details provided in Table S8 (see 
supplementary material available online). Based on the validation re
sults, OC-SMART performs slightly better than GDPS, especially at 412 
nm. However, the number of qualified matchup data from GDPS re
trievals (i.e. 130 matchups for AERONET-OC) are 35% smaller than for 
OC-SMART (i.e. 200 matchups for AERONET-OC) due to aggressive 
cloud masking and atmospheric correction failures. Therefore, use of the 
MLNN based AC algorithm available in OC-SMART could potentially 
recover a significant amount of ocean color retrievals from GOCI images. 

Fig. 11. Validation of the absorption by detritus and Gelbstoff (adg) from SeaWiFS images against in-situ measurements. Top: retrieval by OC-SMART, bottom: 
retrieval by AC and GIOP algorithms available in NASA SeaDAS v7.5.2. The blue dashed line shows linear regression. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Validation of the particulates backscattering (bbp) from SeaWiFS images against in-situ measurements. Top: retrieval by OC-SMART, bottom: retrieval by AC 
and GIOP algorithms available in NASA SeaDAS v7.5.2. The blue dashed line shows linear regression. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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4.4. Application to hyperspectral sensors 

Current ocean color sensors reveal the quantity of phytoplankton in 
the ocean surface layer, but have yet to determine the diversity of spe
cies. The Ocean Color Instrument (OCI) onboard the future Plankton, 
Aerosol, Cloud, ocean Ecosystem (PACE) mission spacecraft will provide 
hyper-spectral measurements (i.e. 5 nm spectral resolution from 340 nm 
to 890 nm) of the global ocean every 1–2 days. Hence, the PACE mission 
has the potential to improve estimates of the phytoplankton community 
composition and also improve the discrimination of biogenic constitu
ents in the ocean (e.g., UV measurements will improve the separation of 
absorption by the colored dissolved organic matter (CDOM) and ab
sorption by phytoplankton). 

To explore the feasibility of applying our machine learning algo
rithms to hyper-spectral measurements, we developed a preliminary 
machine learning based AC and ocean IOP algorithm for the Hyper
spectral Imager for the Coastal Ocean (HICO), the first spaceborne im
aging spectrometer designed to sample the coastal ocean (Corson et al., 
2008; Lucke et al., 2011). Deployed onboard the International Space 
Station (ISS), HICO samples selected coastal regions at 90 m spatial 
resolution with a very high signal-to-noise ratio (SNR) to resolve the 
complexity of the coastal ocean. The spectral range of HICO is 
350–1080 nm with a sampling interval of 5.7 nm. However, the best 
data provided by HICO lie in the 400–900 nm spectral range; data ob
tained outside this spectral range are less accurate (Lucke et al., 2011; 
Ibrahim et al., 2018). We developed preliminary versions of our ma
chine learning based AC and ocean IOP retrieval algorithms for HICO for 
the 400–900 nm spectral range. The algorithms will be extended to the 
UV range in a forthcoming version. Gaussian functions centered at each 
HICO band with a FWHM of 10 nm for the 400–745 nm spectral range 
and 20 nm for the 745–900 nm spectral range were used as the relative 
spectral response functions in the radiative transfer simulations. A few 
bands that are affected by water vapor (i.e. around 725 nm and 825 nm) 
and oxygen absorption (i.e. around 765 nm) were also excluded in the 
preliminary version of the algorithms. 

Fig. 15 shows one example of ocean color products retrieved by OC- 
SMART and NASA SeaDAS from HICO images over Chesapeake Bay on 
March 13, 2014. The RGB image composed from Rrs retrievals, i.e. 
panels (b) and (g), shows that the heritage algorithm in SeaDAS does not 
work in highly turbid waters and yields some areas with no retrievals 
(red circled areas) in all the ocean color products. A closer inspection of 
the area indicated that these pixels failed the atmospheric correction 
algorithm, marked by the flag ATMFAIL in SeaDAS. In contrast, OC- 
SMART works well in both highly turbid and moderately turbid 
coastal waters. Comparison of the ocean IOP products, i.e. panel (c) - (e) 
and (h) - (i), show that in addition to the “no retrieval” issue in highly 
turbid water, the GIOP algorithm in SeaDAS failed in some coastal areas 
(marked by green circles). A closer inspection showed that negative nRrs 
values were retrieved by the SeaDAS AC algorithm in the UV and blue 
bands which may explain the failure of the GIOP algorithm. Another 
issue with the GIOP algorithm in this particular case is that the eigen
vectors of the 3 ocean IOPs may not be suitable, especially in the open 
water area outside Chesapeake Bay, which may lead to an over
estimation of retrieved aph values and an underestimation of retrieved 

Fig. 13. Location of the field measurements made by KIOST (dots) and 
AERONET-OC stations (crosses) used for validation of satellite retrievals from 
the GOCI sensor by OC-SMART and GDPS 2.0. 

Fig. 14. Validation of Rrs retrievals from GOCI images against in-situ measurements. Top: retrieval by OC-SMART, bottom: retrieval by GDPS v2.0. The blue dashed 
line shows linear regression. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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adg values. For example, panels (h) and (i) show a much lower value in 
the adg retrieval and much higher value in the aph retrieval from the 
GIOP algorithm. In contrast, the ocean IOPs retrieved by OC-SMART 
appear to be quite reasonable for this case. 

5. Discussion 

The machine learning technology has been successfully applied to 
many aspects of our modern life. In this paper, we have created a 
framework for application of machine learning algorithms to global 
ocean color missions and demonstrated their superiority over heritage 
algorithms. In particular, a well trained machine learning algorithm is 
more resilient to noise in satellite measurements (see Section 5.1), and 
the non-uniqueness of the retrievals appears not to be a serious issue, as 
discussed in Section 5.2. 

5.1. Sensor signal to noise ratio (SNR) requirements 

Satellite measurements always have inherent noise including shot 
noise, readout noise, dark noise, etc. Most heritage algorithms do not 
have the capability to handle noise in satellite measurements, and 

therefore require the sensor to have a very high SNR, i.e. larger than 400 
(Qi et al., 2017). If properly trained, a machine learning algorithm is 
capable of extracting information from noisy data accurately, due to its 
interpolation capability, and is applicable to sensors with SNR as low as 
50. Therefore, another important improvement that we made to the 
training process is to incorporate the sensor SNR in the training data. 
The SNR of a satellite sensor is usually given at a typical radiance level 
(Ltypical). However, the actual SNR is not a constant, implying that if the 
satellite-measured radiance is lower than Ltypical, then the SNR is also 
lower. Therefore, when adding noise to the training dataset, an appro
priate noise level must be established. The published SNR values at 
Ltypical should not be used, because the MLNN will not be able to learn to 
handle the larger noise associated with pixels that have radiances lower 
than Ltypical. In principle, the lowest possible SNR should be used, 
however, if the SNR is too low, the training accuracy also decreases, 
implying that the trained MLNN will have a low sensitivity that will 
affect the quality of the retrieved ocean color products. To find a good 
balance between noise handling capability and feature sensitivity, we 
tested the performance of the MLNN with different SNR settings and 
found that a SNR level between 50 and 100 (i.e. adding 1–2% of noise to 
the TOA radiances) is adequate for many ocean color sensors. Therefore, 

Fig. 15. Comparison of ocean color products retrieved by OC-SMART (top panels) and NASA SeaDAS (bottom panels) from HICO images on March 13, 2014. (a) and 
(f): RGB composed from TOA reflectance at 473 nm, 553 nm and 650 nm; (b) and (g): RGB composed from Rrs retrievals at 473 nm, 553 nm and 650 nm; (c) and (h): 
retrieved aph at 444 nm; (d) and (i): retrieved adg at 444 nm; (e) and (j): retrieved bbp at 444 nm. 

Fig. 16. Top left: daily global CHL product on May 23, 2018 retrieved from EPIC by OC-SMART. Bottom left: daily global CHL product on May 23, 2018 retrieved 
from MODIS and VIIRS by SeaDAS. Right: scatterplot of the CHL product retrieved from EPIC and combined MODIS/VIIRS. The color of the plot means data density. 
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Gaussian distributed noise with a standard deviation matching the 
selected SNR, is added independently to the TOA radiances at all 
wavelengths before the training. 

The ability to handle noise in the input data is one of the biggest 
advantages of machine learning algorithms. To demonstrate this 
advantage, we applied our machine learning algorithms to the Earth 
Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate 
Observatory (DSCOVR) (Marshak et al., 2018). The EPIC sensor does not 
have the proper NIR or SWIR bands required by the heritage algorithms 
for aerosol model estimation and the SNR of the EPIC sensor may be as 
low as 50 (personal communication with members of the EPIC Science 
team). Therefore, the heritage algorithms are not suitable for analysis of 
EPIC data. Gao et al. (2019) recently attempted retrieval of ocean color 
products from EPIC using a heritage algorithm, and showed that the 
heritage algorithm is unable to retrieve real time aerosol information 
from EPIC images. Therefore, climatology aerosol models and aerosol 
optical depths were used in the study reported by Gao et al. (2019). 

Our machine learning based AC algorithm does not depend on NIR or 
SWIR spectral bands, and is therefore applicable to EPIC. We used a SNR 
level of 50 when training the AC algorithm for EPIC. The retrieved daily 
global CHL product on May 23, 2018 is shown in top left panel of Fig. 16. 
For comparison, the daily global chlorophyll_a concentration (CHL) 
product from combined MODIS and VIIRS retrievals using heritage al
gorithms is also shown in the bottom left panel of Fig. 16. A scatterplot 
of the two CHL products is shown in the right panel of Fig. 16. The color 
of the plot means data density. There is a very good agreement between 
the two daily global CHL products and the significantly increased spatial 
coverage in the EPIC CHL product is due to the high temporal resolution 
of the EPIC sensor. This result demonstrates that a machine learning 
algorithm is capable of retrieving high quality ocean color products from 
low SNR sensors that are normally considered difficult (if not impos
sible) to retrieve by heritage algorithms. 

5.2. Uniqueness of retrieval from machine learning algorithms 

Inverse methods are aimed at retrieving a set of state parameters (e. 

g. aerosol optical depths, remote sensing reflectances, etc.) from satellite 
measured top-of-atmosphere (TOA) reflectances. However, a different 
set of state parameters could (within the noise level) be associated with 
similar spectral TOA reflectances. This non-uniqueness of the retrieved 
state parameters becomes a problem if the inverse method was unable to 
retrieve the correct set of parameters. To evaluate the performance of 
the machine learning algorithm under such conditions, we searched 
through our training dataset to identify any two cases that have similar 
spectral Rayleigh corrected TOA reflectances (Lrc values). Then, we 
applied OC-SMART to retrieve the spectral AOD and Rrs values from the 
identified cases and compared the retrieval with the true values (i.e. the 
input values used in the RT simulations). Fig. 17 shows some examples 
of the identified non-unique cases and the comparison between OC- 
SMART retrievals and the true values. The upper panels show the 
comparison of the two spectral Lrc values. The band-averaged percent
age difference between the two cases is less than 0.5% for open ocean 
cases (first 3 panels), and less than 1.3% for coastal water cases (last 3 
panels). The middle panels show a comparison between the retrieved 
AOD values (dashed lines) and the true values (solid lines). The lower 
panels show the same as the middle panels but for Rrs values. The 
comparison shows that the machine learning algorithm was able to 
retrieve the correct set of AOD and Rrs values from similar spectral Lrc. 
The reason is that even though the spectral Lrc values are similar be
tween the two cases, other parameters, such as geometry angles and 
relative humidity (RH), are different. Therefore, the correct set of AOD 
and Rrs values associated with each case can be retrieved by the machine 
learning algorithm in OC-SMART, since it takes geometry angles and RH 
into account. Therefore, in addition to the spectral remote sensing re
flectances, other parameters are required to help resolve the non- 
uniqueness issue in the inverse problem. We have also discovered that 
the chance of identifying two cases with similar spectral Lrc values is 
very low, about 1 in 1 million paired cases. Therefore, the training 
dataset for the machine learning algorithm must be large enough so that 
the non-unique cases have sufficient appearance for the machine 
learning algorithm to learn its pattern. We believe that there could be 
cases when the machine learning algorithm was unable to retrieve the 

Fig. 17. Case study of the non-uniqueness issue of the machine learning algorithm for open ocean (first 3 columns) and coastal water (last 3 columns) cases. Upper 
panels: Comparison of the two cases with similar Rayleigh corrected TOA radiances (Lrc). Middle panels: Comparison of the AOD values retrieved by the AOD MLNN 
of the two cases. Solid lines are the true values (i.e. input values used in the RT simulations) and the dashed lines are the retrievals by the AOD MLNN. Lower panels: 
Similar as the middle panels but for Rrs retrievals; the inset at the upper right corner of the first 3 panels is an enlargement to show the details. 
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correct set of state parameters. However, it does not seem to be a severe 
problem for OC-SMART, and with larger and more comprehensive 
training datasets and additional input parameters, such as polarization, 
the impact of the non-uniqueness issue may be minimized. 

6. Future directions 

6.1. Vector radiative transfer simulations 

In this paper we have used a scalar radiative transfer (RT) code for a 
coupled atmosphere-ocean system to create simulated datasets used for 
training of machine learning algorithms, except for the Rayleigh scat
tering corrections that rely on polarized (vector) RT simulations. We 
have developed a fully polarized RT model that is implemented in 
AccuRT (Stamnes et al., 2018a). However, it is still premature to utilize a 
polarized RT model to generate comprehensive RT simulation dataset 
required by the neural network training. One particular issue is the lack 
of good quality measurement data to construct realistic phase matrices 
for both open ocean and coastal waters. Once such data becomes 

available, we will use the polarized RT model for the RT simulations. We 
expect that use of fully polarized RT simulations will lead to further 
improvements in retrieval results as discussed elsewhere (Stamnes et al., 
2018b, 2018c). 

6.2. Correction for earth curvature effects 

Satellite images acquired in the polar regions or near sunrise and 
sunset (i.e. for geostationary satellites) often have solar zenith angles 
larger than 75∘. Ocean color products retrieved by current AC algorithms 
typically have large uncertainties under such conditions, due to in
adequacies related to both forward and inverse modeling. In the forward 
RT model, the plane-parallel approximation (PPA) becomes invalid for 
solar zenith angles larger than about 75∘ (and large viewing angles). 
Therefore, we need to take Earth curvature into account as discussed by 
He et al. (2018). An approximate way to deal with this problem is the so- 
called pseudo-spherical approximation (PSA), in which the last term of Eq. 
(2). i.e. the direct beam single-scattering (solar pseudo-source) term is 
treated in spherical geometry by letting e− τ/μ0 → e− τ Ch(μ0) in Eq. (2). In 

Fig. 18. Comparison of cloud mask algorithms applied to a GOCI image on 01/01/2018 at 05:16 UTC. (a) is a GOCI RGB image; (b), (c), and (d) are cloud mask 
results obtained from STDCM, N09CM, and MLCM, respectively. Red circled areas in panels (c) and (d) show better cloud edge detection of the MLCM compared to 
N09CM. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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the PSA the Chapman function Ch(μ0) takes curvature into account 
(Stamnes et al., 2017; He et al., 2018), while the multiple scattering term 
is treated using the PPA. For the inverse modeling, one challenge is that 
removal of the Rayleigh reflectance from the total TOA reflectance be
comes more difficult and may yield negative values (He et al., 2018). 
Therefore, for large solar zenith angles the total TOA reflectance must be 
used to train the neural network. Hence, to account for Earth curvature 
effects, we will invoke the pseudo-spherical approximation in the for
ward RT simulation and develop a new algorithm to derive remote 
sensing reflectances from total TOA reflectances, without removing the 
Rayleigh contribution. 

6.3. Cloud mask improvements 

Most current cloud screening methods employ thresholds based on 
empirical or statistical analyses of data from a specific area, implying 
that it may be questionable to apply such a threshold to a different area 
and under different solar/viewing geometries. Exploiting advances in 
machine learning techniques, we have developed a new, threshold-free 
cloud mask algorithm (MLCM) based on a neural network classifier 
driven by extensive RTM simulations (Chen et al., 2018). We generated a 
large dataset which covers as many combinations of water/aerosol/ 
cloud configurations as deemed desirable and used advanced machine 
learning algorithms to classify these cases. Compared to traditional 
methods, MLCM has no fixed thresholds, and can be applied to any area 
of the world for any sun-sensor geometry. 

Fig. 18 shows a comparison of STDCM, N09CM, and MLCM cloud 
mask results for a GOCI image obtained on 01/01/2018 at 05:16 UTC. 
Panel (a) is the GOCI RGB image, panels (b), (c), and (d) are the cloud 
mask results obtained by STDCM, N09CM, and MLCM, respectively. It is 
clear that the STDCM misidentified most of the pixels in the coastal area. 
The N09CM and MLCM cloud masks yielded very similar results and 
both correctly identified the cloudy pixels in the coastal area. However, 
the MLCM performs significantly better than N09CM at large solar and 
viewing zenith angles (i.e. θ0 > 70∘ and θ > 50∘, see upper right corner of 
panel (c) and (d) in Fig. 18). The large errors in ρrc (due to lack of 
consideration of the Earth curvature effect at large SZAs) used in N09CM 
may have been the reason for this type of mis-classification. The MLCM 
is trained by TOA radiances instead of ρrc to avoid possible errors 
introduced by the use of Rayleigh-corrected radiances at large SZAs (He 
et al., 2018). In addition, tests have shown that MLCM better identifies 
cloud edges compared to N09CM which can be seen in the bottom and 
right part of Fig. 18, circled in red. We note that MLCM has some 
misclassification over the coastal area of East China with either 
extremely turbid or shallow water. This misclassification suggests that 
we need to improve the MLCM by including RT simulations of such 
extreme cases in the training dataset. The MLCM is currently under final 
assessment and will be implemented in OC-SMART to replace N09CM in 
future versions. 

6.4. Bayesian uncertainty estimation 

It is desirable to provide uncertainties on a per-pixel basis for satellite 
retrievals, however, it is a difficult task for a neural network designed as 
a regressor, which typically returns a single predicted value rather than 
a probability distribution. To obtain uncertainty estimates on a per-pixel 
basis we adopted a Bayesian approach in which uncertainties in 
measured TOA radiances and a priori information are used to quantify 
uncertainties in the retrieval parameters delivered by OC-SMART. The 
Bayesian uncertainty estimation algorithm is currently under final 
assessment and will be implemented in OC-SMART in future versions. 

7. Summary and conclusions 

In this paper, we described the methodology and implementation of 
machine learning based AC and ocean IOP algorithms for global ocean 

color applications. The algorithms are developed based on extensive 
radiative transfer simulations of a coupled atmosphere-ocean system. 
Multiple atmosphere, aerosol and ocean IOP models were adopted to 
create a large, comprehensive, and realistic dataset used for training. 
The algorithms have been implemented in a new multi-sensor platform, 
OC-SMART, for ocean color data retrievals from images obtained by 
satellite remote sensing instruments. Compelling features of OC-SMART 
can be summarized as follows:  

• Global application: OC-SMART is applicable in both open ocean and 
coastal/inland waters, as well as in extreme conditions such as heavy 
aerosol loadings, extremely turbid water, etc. 

• Reliability: OC-SMART provides a complete resolution of the nega
tive water-leaving signal issue which plagues heritage AC 
algorithms.  

• Flexibility: The framework of OC-SMART is, in principle, applicable 
to any suitable combination of spectral bands but requires some 
effort in forward/inverse modeling and validation to fully integrate a 
new sensor.  

• Noise handling: OC-SMART appears to be weakly affected by noise in 
the satellite measurements and therefore applicable to sensors with 
low signal to noise ratio (SNR).  

• Accuracy: OC-SMART provides improved retrievals of water-leaving 
radiances and ocean IOPs compared to the heritage algorithms, 
especially in complex coastal and inland water areas.  

• Robustness: OC-SMART appears to be robust and resilient to 
contamination due to sunglint and adjacency effects of land or cloud 
edges based on extensive testing (not documented in this paper).  

• Efficiency: OC-SMART is fast (about 10 times faster than NASA’s 
SeaDAS package) and suitable for operational use.  

• Multi-sensor support: OC-SMART currently supports 11 sensors: 
SeaWiFS, Aqua/MODIS, SNPP/VIIRS, ISS/HICO, Landsat8/OLI, 
DSCOVR/EPIC, Sentinel-2/MSI, Sentinel-3/OLCI, COMS/GOCI, 
GCOM-C/SGLI and FengYun-3D/MERSI2. 

OC-SMART is currently available as a standalone Python package or 
as a plugin that can be installed in ESA’s SNAP platform (http://www. 
rtatmocn.com/oc-smart/). 

The remote sensing reflectance (Rrs) and ocean IOP products (i.e. aph, 
adg and bbp) retrieved by OC-SMART from images taken by SeaWiFS, 
MODIS, and VIIRS are validated using a global dataset that include in- 
situ measurements from MOBY, SeaBASS, and AERONET-OC stations. 
The ocean color products retrieved by the heritage algorithms imple
mented in NASA’s SeaDAS package are also provided for comparison. 
The results show that OC-SMART improved Rrs retrievals for all the three 
sensors, especially in blue and red bands where OC-SMART reduces APD 
by up to 25%. Comparison of the ocean IOP products shows a significant 
improvement obtained by OC-SMART compared with the SeaDAS AC +
GIOP algorithms. A closer inspection shows that the negative Rrs issue 
has greatly degraded the performance of the GIOP algorithm. 

In Section 5.1, we discussed the signal to noise ratio (SNR) require
ment for machine learning (ML) based algorithms and showed that ML 
algorithms can deal with or tolerate much lower SNR levels than heri
tage algorithms which have limited ability to handle noise in the satel
lite measurements. Non-uniqueness of the retrievals obtained by ML 
algorithms appears not to be a serious issue, as discussed in Section 5.2. 

In Section 6 we discussed some important remaining topics to be 
addressed in future developments of OC-SMART, such as use of vector 
rather than scalar RT forward model simulations, application to large 
solar zenith angle conditions, cloud screening over turbid coastal/inland 
waters, and application of the Bayesian approach to uncertainty esti
mation. These topics constitute possible directions for future de
velopments of OC-SMART and similar ocean color algorithms. 
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