PACE simulated Data: R_{rs} *simulation using Hydrolight*

Hubert Loisel, Daniel Schaffer LOG (France) **Darisuz Stramski, Rick Reynolds** MPL (Scripps, USA)

Laboratoire d'Océanologie et de Géosciences UMR 8187 - CNRS - Univ. Lille - ULCO

The objective is to generate a synthetic hyperspectral IOPs, Rrs, and Kd data set from Hydrolight simulations

Runs will start in January/February

Spectral range from 300 to 800 nm with 5 nm resolution (or 3 nm, but according to Cael et al. (2020) error more important than resolution, so…. 5 ok)

Good vertical resolution to be able to calculate Kd over the first attenuation depth (37% of Ed(0-)) All AOPs will be make available.

Include inelastic processes:

- Run without Raman
- Runs with Raman
- Runs with Raman+Chl fluo with a mean chlorophyll fluorescence quantum efficiency

Deep ocean (no bottom albedo), IOPs homogeneously distributed, wind speed of 5 m.s-1

Representative of IOPs variability commonly encountered in the natural environment. The IOPs variability will be driven by $a_{\text{phy}}(440)$ (free variable) as a starting point similarly to Craig et al. (2020).

Approach for synthesizing water IOPs for COART:

$$
b_b(\lambda) = b_{bw}(\lambda) \cdot b_{b-ph}(\lambda) + b_{b-dm}(\lambda)
$$

\n
$$
a(\lambda) = a_w(\lambda) \cdot a_{ph}(\lambda) \cdot a_b(\lambda) + a_d(\lambda)
$$

\nconstants From measurements
\nand,
\n
$$
a_y(\lambda) = a_y(440) \cdot b_y(440) \cdot b_y(\lambda) + 400 \cdot b_y(440) = p_1 \times a_{ph}(440)
$$

\n
$$
a_d(\lambda) = a_d(440) \cdot b_{b-ph}(\lambda) - a_{ph}(\lambda)
$$

\n
$$
b_{b-ph}(\lambda) = 0.01 \times (c_{ph}(\lambda) - a_{ph}(\lambda)) \cdot a_d(440) = p_2 \times a_{ph}(440)
$$

\n
$$
b_{b-dm}(\lambda) = p_3 \times \left(\frac{440}{\lambda}\right)^{p_4} \cdot b_{b-dm}(\lambda) = p_5 \times \left(\frac{440}{\lambda}\right)^{p_6} \cdot b_{b-dm}(\lambda) = p_6 \times \left(\frac{440}{\lambda}\right)^{p_7} \cdot b_{b-dm}(\lambda) = p_7 \times a_{ph}(\lambda) = p_8 \times a_{ph}(\lambda) = p_9 \times a_{ph}(\lambda) = p_9
$$

$$
b_{b-ph}(\lambda) = 0.01 \times (c_{ph}(\lambda) - a_{ph}(\lambda))
$$

$$
b_{b-dm}(\lambda) = (p_5) \times (\frac{440}{\lambda})^{p_6}
$$

$$
c_{ph}(\lambda) = (p_3) \times (26880)^{2}
$$

p5=(0.6-0.06).* random(between 0 and 1) +0.06;

p3=(0.6-0.06).* random(between 0 and 1) +0.06;

IOP in situ

IOP in situ

IOP in situ

Representativity of the in situ data set

First condition: the generated IOPs will have, at least, to cover the scatter observed from the in situ data set, using the previous parameterizations.

Note that in situ data for which b_{bp} , a_{phy} , a_{NAP} , a_{cdom} are available will also be included.

Distribution of in situ IOP

Distribution of IOP as estimated from OCR (2SAA)

Second condition: the distribution of the IOPs used for the simulations will have to cover, at least, the variability observed at global scale from satellite.

