A Brief Introduction to the EMIT Mission

David R. Thompson¹ - david.r.thompson@jpl.nasa.gov on behalf of Robert D. Green¹, Natalie Mahowald² and the EMIT team ¹Jet Propulsion Laboratory, California Institute of Technology

¹Jet Propulsion Laboratory, California Institute of Technology ² Cornell University

EMIT is supported by the Earth Venture Instrument Program, NASA Science Mission Directorate, Earth Science Division. Copyright 2020 California Institute of Technology. All Rights Reserved.

The Earth surface Mineral dust source InvesTigation (EMIT)

This document has been reviewed and determined not to contain export controlled data

EMIT Science Objectives

1. Constrain the sign and magnitude of dust-related RF at regional and global scales.

EMIT achieves this objective by acquiring, validating and delivering updates of surface mineralogy used to initialize Earth System Models.

2. Predict the increase or decrease of available dust sources under future climate scenarios.

EMIT achieves this objective by initializing Earth System Model forecast models with the mineralogy of soils exposed within at-risk lands bordering arid dust source regions.

EMIT Science Team

Investigator	Institution	Role	Responsibility
Robert O. Green	JPL Caltech	PI	Overall responsibility for EMIT investigation: hardware development, operations, calibration, validation, data processing, retrievals, archiving and achieving science objectives. (L1b, L1bv)
Natalie Mahowald	Cornell University	Deputy PI	Earth system model L4 team lead with responsibility for overall modeling validation as well as lead for the models. (L4, L4v)
David R. Thompson	JPL Caltech	Instrument Scientist, Co-I	L1 product lead and L2a Lead for atmospheric correction. (L1b, L2a, L2av)
Roger Clark	Planetary Science Institute	Co-l	L2b mineral composition lead with validation responsibility. (L2b, L2bv)
Bethany Ehlmann	JPL Caltech	Co-I	Mineral composition and abundance validation; Quantification.
Paul Ginoux (CS)	NOAA, Princeton University	Co-I	Modeling anthropogenic mineral dust and its effects, through mineralogy, on radiation and air quality. Validation with respect to satellite measurements. Modeling of future impacts. (L4, L4v)
Olga Kalashnikova	JPL Caltech	Co-I	Dust optical property modeler. Models of dust optical properties in relation to dust microphysics. Assists with dust atmospheric correction. (L4, L2a)
Ron Miller (CS)	NASA GISS, Columbia University	Co-l	Model lead for GISS GCM and inclusion of EMIT products to achieve the science objectives. (L4, L3, L3v)
Greg Okin	University of California Los Angeles	Co-I	L3 product lead with composited aggregated product validation. (L3, L3v); Vegetation screening in arid lands.
Thomas Painter	University of California Los Angeles	Co-I	Radiative forcing and mineral dust composition validation measurements. (L2av, L2bv, L3)
Carlos Perez	Barcelona Super Computer Center (formerly GISS, Columbia University)	Co-I	Modeling of the mineral dust aerosol cycle with the EMIT-derived high-resolution map of soil mineral content. Evaluation of the models using in situ measurements and satellite retrievals. (L4, L4v, L3, L3v)
Vincent Realmuto	JPL Caltech	Co-l	Measurement to Model lead. Ancillary data layers.
Gregg Swayze (CS)	US Geological Survey	Co-l	Mineral library responsibility and L2b validation measurements and reports. (L2av, L2b, L2bv)
Elizabeth Middleton (CS)	NASA GSFC	Collaborator	Collaborator to assure lessons learned and experience from Hyperion are incorporated.
Luis Guanter	German Centre for Geosciences (GFZ)	Collaborator	Collaborator to maintain connection with EnMAP including potential cross-validation
Eyal Ben Dor	University of Tel Aviv	Collaborator	Collaborator with mineral dust validation data sets.

The EMIT Instrument

EMIT Imaging Spectrometer Elements

Two-mirror Telescope

- M1 (y-decentered, asphere)
- M2 (y-decentered, asphere)
- Dyson spectrometer
 - Dyson block: CaF2 lens with step
 - Slit (30 µm width, 37.2 mm length)
 - Diffraction grating (structured blaze)
- FPA Assembly
 - Order sorting filter (three zone)
 - Detector (HgMgTe)
 - 1280 x 480 pixel format
 - 30 µm pixel size

<i>i</i>	
F-number	F/1.8
Cross-track FOV	11 [°]
IFOV (cross-track x along-track)	155 x 171 µrad
Focal length	193.5 mm
Entrance pupil aperture	110 mm
Spectral Range	380 – 2500 nm
Spectral Sampling	7.4 nm
Entrance pupil aperture Spectral Range Spectral Sampling	110 mm 380 – 2500 nm 7.4 nm

EMIT Instrument Configuration

This document has been reviewed and determined not to contain export controlled data

EMIT Baseline Target Areas

This document has been reviewed and determined not to contain export controlled data

EMIT product needs

- 1. Statistically rigorous uncertainty quantification and propagation
- 2. Accurate, to measure subtle changes in mineral band positions
- 3. Handle aerosol loadings up to $AOD_{550} = 0.4$
- 4. Global application
- 5. 100 GB / day

L4: CESM, GISS Model Runs

L2a Retrieval Algorithms: The "Forward Model"

Forward model components (state vector in **red**)

Instrument: EMIT

- Instrument model with Wavelength- and signal-dependent SNR
- Photon shot & read noise
- Uncorrelated calibration uncertainty

Atmosphere: MODTRAN 6.0 RTM

• DISORT MS, Correlated-k

10/20/2020

- Custom aerosol model with broad priors
- H₂O column, AOD (1-3 elements)

Surface: Multi-component Multivariate Gaussians

• Reflectance estimated independently in each channel (300 elements)

- Contract of the second secon

Retrieval Algorithms: The "Inverse Problem"

Maximum *A Posteriori* solution

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})}$$

Maximum A Posteriori solution

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})}$$

Taking the logarithm of p(x | y), and ignoring terms that are constant with x:

... we can solve it by conjugate gradient descent.

This document has been reviewed and determined not to contain export controlled data

[C. D. Rodgers, 2000]

L2 Inversion: Bayesian Maximum A Posteriori

L2 surface reflectance posterior uncertainty

- x: State vector
 K: Jacobian of radiance with respect to state
 S_e: Observation noise
- **S**_a: Prior covariance

Coastal water applications

[Frouin et al., *Frontiers in Earth Science* 2019, Thompson et al., *Remote Sensing of Environment, 231, 2019*]

Aerosol retrievals in challenging atmospheres

[Thompson et al., Remote Sensing of Environment, 232, 2019]

contain export controlled data

Column average H₂O vapor, flightline C (ang20180514t055115)

Imaging the atmosphere at high spatial resolution

David R Thompson, Matt Lebsock, Mark Richardson, Philip G Brodrick, Brian Kahn, and others

19

10/20/2020

This document has been reviewed and determined not to

contain export controlled data

FIRE-X AQ Campaign

Michael Garay Olga Kalashnikova Philip G Brodrick David R Thompson

This document has been reviewed and determined not to contain export controlled data

20

2.0

contain export controlled data

Using predictive uncertainties to improve downstream (L3) algorithms

10/20/2020

This document has been reviewed and determined not to contain export controlled data

Validation of uncertainty predictions

[Thompson et al., Remote Sensing of Environment 2020]

0.7

0.6

N++++++++++

EMIT measurments significantly improve uncertainty in ESM radiative forcing predictions

[Connelly et al.,. in review]

contain export controlled data

Summary

- EMIT will measure VSWIR solar-reflected spectroscopy at 60m resolution across a significant fraction of Earth's terrestrial area
- EMIT will distribute uncertainty estimates with every product level
- EMIT intends to significantly improve our understanding of mineral dust interactions with Earth's climate.

contain export controlled data

Resources

Source code: https://github.com/isofit/isofit

Tutorials: https://github.com/davidraythompson/istutor (modules 11-14)

Bibliography:

- 1. N. Carmon, D. R. Thompson, J. Susiluoto, N. Bohn, D. S. Connelly, M. J. Turmon, K. Cawse-Nicholson, R. O Green, M. R Gunson. **Uncertainty Quantification for Global Remote Spectroscopy of Surface Composition**. *Remote Sensing of Environment*, in review, 2020.
- 2. D. R. Thompson, Alberto Candela, Nimrod Carmon, Roger N. Clark, David Connelly, Bethany Ehlmann, Robert D. Green, Raymond Kokaly, Nathalie Mahowald, Gregory Okin, Gregg A. Swayze, Michael Turmon, and David S. Wettergreen, "Quantifying Uncertainty for Remote Spectroscopy of Surface Composition," *Remote Sensing of Environment*. In press, 2020.
- 3. D. R. Thompson, K. N. Babu, A. Braverman, M. Eastwood, R. D. Green, J. Hobbs, J. B. Jewell, M. Mishra, A. Mathur, V. Natraj, F. C. Seidel, P. Townsend, M. Turmon. "**Optimal Estimation of Spectral Surface Reflectance in Challenging Atmospheres**," *Remote Sensing of Environment*, 232, 111258, 2019.
- 4. R. Frouin, B. Franz, A. Ibrahim, K. Knobelspiesse, Z. Ahmad, B. Cairns, J. Chowdhary, H. M. Dierssen, D. Dubovik, J. Tan, A. B. Davis, D. J. Diner, D. Kalashnikova, D. R. Thompson, L. R. Remer, E. Boss, D. Coddington, B-C Gao, L. Gross, D. Hasekamp, A. Omar, B. Pelletier, D. Ramon, P-W. Zhai., Atmospheric correction of satellite ocean-color imagery during the PACE era. *Frontiers in Marine Science* 7: 145, 2019.
- 5. D. R. Thompson, K. Cawse-Nicholson, Z. Erickson, C. Fichot, C. Frankenberg, B-C. Gao, M. M. Gierach, R. D. Green, D. Jensen, V. Natraj, A. Thompson. "A unified approach to estimate land and water reflectances with uncertainties for coastal imaging spectroscopy," *Remote Sensing of Environment* 231, 11198, 2019.
- 6. B. D. Bue, D. R. Thompson, S. Deshpande, M. Eastwood, C. Fichot, R. O. Green, T. Mullen, V. Natraj, and M. Parente, "Neural Network Radiative Transfer for Imaging Spectroscopy." Atmospheric Measurement Techniques 12, 2567–2578, 2019 https://doi.org/10.5194/amt-12-2567-2019
- 7. D. R. Thompson, V. Natraj, R. D. Green, M. Helmlinger, B.-C. Gao, and M. L. Eastwood, "Optimal Estimation for Imaging Spectrometer Atmospheric Correction." *Remote Sensing of Environment* 216, p. 355-373, 2018.

Extras

Wavelength (nm)

This document has been reviewed and determined not to contain export controlled data

28

Surface prior covariance

- A collection of multivariate Gaussians
- Fit via a "universal" library and further regularized to reduce bias
- We remove all correlations outside water vapor absorption windows
- This preserves fidelity of sharp high-contrast mineral features not included in the original library

10/20/2020

contain export controlled data

Simultaneous VSWIR + Thermal IR inversions

Jay Fahlen, Philip G. Brodrick, David R. Thompson, and others

30

This document has been reviewed and determined not to contain export controlled data

Solution: Generalized observation noise

Dark current noise

•

- Systematic radiative transfer error
- Uncorrelated radiative transfer error

Estimating model uncertainties with observed residuals

[Thompson et al., *Remote Sens. Environ 2018]*

Sample-based posterior estimation

Computationally more challenging but captures the full posterior Linearized estimates work well for reflectance terms

[Thompson et al., Remote Sensing of Environment 231, 2019]

This document has been reviewed and determined not to contain export controlled data

Posterior uncertainty decomposition

This document has been reviewed and determined not to

contain export controlled data

Reflectance estimate vs. in situ

[Thompson et al., *Remote Sensing of Environment* 2018]

10/20/2020

contain export controlled data

The observation noise

The observation noise term is very flexible. It typically incorporates both instrument noise as well as unknowns in the observation system that are not retrieved.

- Photon noise
- Read noise
- Dark current noise

Unknown parameters in the observation

- Sky view factor
- H_2O absorption coefficient intensity
- Systematic radiative transfer error
- Uncorrelated radiative transfer error

Mineral feature fitting

- Retrofit the Clark et al. (2003) technique
- Use a library of absorption signatures from the USGS
- Fit the continuum-removed feature depth
- The best-fitting signature "wins"
- Handle mixtures with dedicated library spectra

Mineral feature fitting

Images from Clark et al., Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems, Journal of Geophysical Research: Planets, Volume: 108, Issue: E12, First published: 06 December 2003, DOI: (10.1029/2002JE001847)

This document has been reviewed and determined not to contain export controlled data

Formulation as Tikhonov Regression

$$\rho_c = K_m x_m + \epsilon \quad \text{for} \quad \epsilon \sim \mathcal{N}(0, \Psi_c)$$

Continuum-removed reflectance measurement Linear operator transforms library absorption feature

Via reflectance uncertainty propagated form L2

Formulation as Tikhonov Regression

$$\rho_c = K_m x_m + \epsilon \quad \text{for} \quad \epsilon \sim \mathcal{N}(0, \Psi_c)$$

Continuum-removed reflectance measurement Linear operator transforms library spectrum

Via reflectance uncertainty propagated form L2

$$\hat{\boldsymbol{x}}_{m} = \boldsymbol{\mu}_{m} + (\boldsymbol{K}_{m}^{T}\boldsymbol{\Psi}_{c}^{-1}\boldsymbol{K}_{m} + \boldsymbol{\Sigma}_{m}^{-1})^{-1}\boldsymbol{K}_{m}^{T}\boldsymbol{\Psi}_{c}^{-1}(\boldsymbol{\rho}_{c} - \boldsymbol{K}_{m}\boldsymbol{\mu}_{m})$$
Uninformed
mineral depth
priors
Uninformed
mineral depth

This document has been reviewed and determined not to

contain export controlled data

Maximum A Posteriori One-of-N spectrum selection

 $p(m|\boldsymbol{\rho}_c) = Zp(\boldsymbol{\rho}_c|\hat{\boldsymbol{x}}_m)p(m)$

Posterior probability of mineral m given measured continuumremoved reflectance

Maximum A Posteriori One-of-N spectrum selection

Log conditional probability density for a given mineral m

$$p(m|\boldsymbol{\rho}_c) = Zp(\boldsymbol{\rho}_c|\hat{\boldsymbol{x}}_m)p(m)$$

Posterior probability of mineral m given measured continuumremoved reflectance Normalization factor

Regional or uninformed prior

Maximum A Posteriori One-of-N spectrum selection

Log conditional probability density for a given mineral m

$$p(m|\boldsymbol{\rho}_c) = Zp(\boldsymbol{\rho}_c|\hat{\boldsymbol{x}}_m)p(m)$$

Posterior probability of mineral m given measured continuumremoved reflectance Normalization factor

Regional or uninformed prior

$$\log p(\boldsymbol{\rho}_c | \hat{\boldsymbol{x}}_m) \propto -(\boldsymbol{K}_m \hat{\boldsymbol{x}}_m - \boldsymbol{\rho}_c)^T \boldsymbol{\Psi}_c^{-1}(\boldsymbol{K}_m \hat{\boldsymbol{x}}_m - \boldsymbol{\rho}_c)$$

... test all minerals, and pick the highest probability

43

10/20/2020

Example maps: iron oxides

Estimated Feature Depth

Negative Log Likelihood (Model Error)

10/20/2020

This document has been reviewed and determined not to contain export controlled data

Posterior uncertainty compared to actual discrepancies

[Thompson et al., Remote Sensing of Environment 2018]

45

10/20/2020

High aerosol loading in India campaign

[Thompson et al., Remote Sensing of Environment, 2019]

This document has been reviewed and determined not to contain export controlled data

State of the state

Universal surface reflectance priors

A collection of multivariate Gaussians, trained on a diverse library spectra and further regularized to enable retrieval of arbitrary surface shapes not previously observed

From Thompson et al., RSE (2018, 2019a, 2019b)

This document has been reviewed and determined not to contain export controlled data