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MODIS October 26, 2007.  Credit: 
NASA
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The Earth surface Mineral dust source InvesTigation (EMIT)



EMIT Science Objectives
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1. Constrain the sign and magnitude of dust-related RF at regional and global scales.  
EMIT achieves this objective by acquiring, validating and delivering updates of surface mineralogy used to 
initialize Earth System Models.  

2. Predict the increase or decrease of available dust sources under future climate scenarios. 
EMIT achieves this objective by initializing Earth System Model forecast models with the mineralogy of soils 
exposed within at-risk lands bordering arid dust source regions.



EMIT Science Team
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Investigator Institution Role Responsibility
Robert O. Green JPL Caltech PI Overall responsibility for EMIT investigation: hardware development, operations, calibration, validation, data 

processing, retrievals, archiving and achieving science objectives. (L1b, L1bv)
Natalie Mahowald Cornell University Deputy PI Earth system model L4 team lead with responsibility for overall modeling validation as well as lead for the models. (L4, 

L4v)
David R. Thompson JPL Caltech Instrument

Scientist, Co-I
L1 product lead and L2a Lead for atmospheric correction. (L1b, L2a, L2av)

Roger Clark Planetary Science Institute Co-I L2b mineral composition lead with validation responsibility. (L2b, L2bv)
Bethany Ehlmann JPL Caltech Co-I Mineral composition and abundance validation; Quantification.
Paul Ginoux (CS) NOAA, Princeton University Co-I Modeling anthropogenic mineral dust and its effects, through mineralogy, on radiation and air quality. Validation with 

respect to satellite measurements. Modeling of future impacts. (L4, L4v)
Olga Kalashnikova JPL Caltech Co-I Dust optical property modeler. Models of dust optical properties in relation to dust microphysics. Assists with dust 

atmospheric correction. (L4, L2a)
Ron Miller (CS) NASA GISS, Columbia University Co-I Model lead for GISS GCM and inclusion of EMIT products to achieve the science objectives. (L4, L3, L3v)
Greg Okin University of California Los 

Angeles
Co-I L3 product lead with composited aggregated product validation. (L3, L3v); Vegetation screening in arid lands.

Thomas Painter University of California Los 
Angeles

Co-I Radiative forcing and mineral dust composition validation measurements. (L2av, L2bv, L3)

Carlos Perez Barcelona Super Computer 
Center (formerly GISS, Columbia 
University)

Co-I Modeling of the mineral dust aerosol cycle with the EMIT-derived high-resolution map of soil mineral content. 
Evaluation of the models using in situ measurements and satellite retrievals. (L4, L4v, L3, L3v)

Vincent Realmuto JPL Caltech Co-I Measurement to Model lead.  Ancillary data layers.
Gregg Swayze (CS) US Geological Survey Co-I Mineral library responsibility and L2b validation measurements and reports. (L2av, L2b, L2bv)
Elizabeth Middleton (CS) NASA GSFC Collaborator Collaborator to assure lessons learned and experience from Hyperion are incorporated.
Luis Guanter German Centre for Geosciences 

(GFZ)
Collaborator Collaborator to maintain connection with EnMAP including potential cross-validation

Eyal Ben Dor University of Tel Aviv Collaborator Collaborator with mineral dust validation data sets.

… and critical affiliates:  Longlei Li, Philip Brodrick, Nimrod Carmon, David Connelly, and over 40 members of the instrument project.



The EMIT Instrument
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EMIT Instrument Configuration
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EMIT Baseline Target Areas
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EMIT product needs

L1: Radiance at 
sensor 

L2a: Surface 
Reflectance

(HRDF)

L2b: Mineralogical 
Maps

1 km
N

Hematite
Goethite

1. Statistically rigorous uncertainty quantification and propagation
2. Accurate, to measure subtle changes in mineral band positions
3. Handle aerosol loadings up to AOD550 = 0.4
4. Global application
5. 100 GB / day

L3: Aggregated 
Mineralogy

L4: CESM, GISS 
Model Runs  

Credit: NCAR



L2a Retrieval Algorithms: The “Forward Model”
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State vector MeasurementForward model



Forward model components (state vector in red)
Instrument: EMIT 
• Instrument model with Wavelength- and signal-dependent SNR 
• Photon shot & read noise
• Uncorrelated calibration uncertainty 

Atmosphere: MODTRAN 6.0 RTM
• DISORT MS, Correlated-k 
• Custom aerosol model with broad priors
• H2O column, AOD (1-3 elements)

Surface: Multi-component Multivariate Gaussians
• Reflectance estimated independently in each channel (300 

elements)
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reflection

scattering

absorption



Retrieval Algorithms: The “Inverse Problem”
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Estimated state vector Measurement Inversion algorithm



Maximum A Posteriori solution
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Maximum A Posteriori solution
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Taking the logarithm of p(x | y), and ignoring terms that are constant with x:

… we can solve it by conjugate gradient descent.

�𝛘𝛘2 𝐱𝐱 = ( )𝐅𝐅(𝐱𝐱) − 𝐲𝐲 𝐓𝐓 𝐒𝐒𝛜𝛜−1 𝐅𝐅 𝐱𝐱 − 𝐲𝐲 + 𝐱𝐱 − 𝐱𝐱𝐚𝐚 𝐓𝐓 𝐒𝐒𝐚𝐚−1 (𝐱𝐱 − 𝐱𝐱𝐚𝐚

Bayesian priorModel match to 
measurement

Cost

[C. D. Rodgers, 2000]



L2 Inversion: Bayesian Maximum A Posteriori 
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�𝛘𝛘2 𝐱𝐱 = ( )𝐅𝐅(𝐱𝐱)− 𝐲𝐲 𝐓𝐓 𝐒𝐒𝛜𝛜−1 𝐅𝐅 𝐱𝐱 − 𝐲𝐲 + 𝐱𝐱 − 𝐱𝐱𝐚𝐚 𝐓𝐓 𝐒𝐒𝐚𝐚−1 (𝐱𝐱 − 𝐱𝐱𝐚𝐚

Bayesian priorModel match to measurementCost

1. Predict 
radiance

2. Optimize 
state vector

𝐲𝐲 = 𝐅𝐅 𝐱𝐱 + ϵ



L2 surface 
reflectance 
posterior 
uncertainty
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�𝒙𝒙

�𝑺𝑺
𝒙𝒙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝(
𝒙𝒙|
𝒚𝒚)

�𝑺𝑺 = 𝑲𝑲𝑻𝑻𝑺𝑺𝒆𝒆−𝟏𝟏𝑲𝑲 + 𝑺𝑺𝒂𝒂−𝟏𝟏
−𝟏𝟏

x: State vector
K: Jacobian of radiance with 
respect to state
Se: Observation noise
Sa: Prior covariance



Coastal water applications    
[Frouin et al., Frontiers in Earth Science 2019, Thompson et al., Remote Sensing of Environment, 231, 2019]
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C
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Aerosol retrievals in challenging atmospheres
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Aerosol 
distortion

Aerosol-related H2O 
vapor distortions H2O vapor 

distortions

Original method
New approach

Original
Converged solution

Aerosol type
fractions

Aerosol type
fractions

[Thompson et al., Remote Sensing of Environment, 232, 2019]



Imaging the atmosphere at 
high spatial resolution
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David R Thompson, Matt Lebsock, 
Mark Richardson, Philip G Brodrick, 
Brian Kahn, and others

Column average H2O vapor, flightline C (ang20180514t055115)

Column average H2O vapor, flightline D (ang20180514t060206)

3.33 g cm-2 3.42 g cm-2 1 km   

3.23 g cm-2 3.34 g cm-2 1 km   
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FIRE-X AQ 
Campaign

Michael Garay
Olga Kalashnikova
Philip G Brodrick
David R Thompson

2.0

0.2

AOD (550 nm)Visible Channel Radiance Estimated Surface Reflectance



L2a EMIT mineral signatures
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Hematite
Goethtite

Carbonates
Clay Minerals

Illite



Using predictive uncertainties to improve downstream (L3) 
algorithms
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[Carmon et al., Rem. Sens. Environ., in press]



Validation of uncertainty 
predictions
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1 km
N

1 km
NN

1 km

D1

R1,2,3

D4

D2 D3,5,6

[Thompson et al., Remote Sensing of Environment 2020]



EMIT measurments significantly improve uncertainty in ESM radiative 
forcing predictions
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1 km
N

1 km
N

[Connelly et al.,. in review]
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Summary

L1: Radiance at 
sensor 

L2a: Surface 
Reflectance

(HRDF)

L2b: Mineralogical 
Maps

1 km
N

Hematite
Goethite

• EMIT will measure VSWIR solar-reflected spectroscopy at 60m resolution across a 
significant fraction of Earth’s terrestrial area

• EMIT will distribute uncertainty estimates with every product level
• EMIT intends to significantly improve our understanding of mineral dust 

interactions with Earth’s climate. 

L3: Aggregated 
Mineralogy

L4: CESM, GISS 
Model Runs  

Credit: NCAR



Resources
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Source code: https://github.com/isofit/isofit

Tutorials: https://github.com/davidraythompson/istutor (modules 11-14)
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D1 D2

D3 D4

D5 D6



Surface prior 
covariance
• A collection of multivariate Gaussians
• Fit via a “universal” library and further 

regularized to reduce bias
• We remove all correlations outside 

water vapor absorption windows
• This preserves fidelity of sharp high-

contrast mineral features not included 
in the original library

10/20/2020 This document has been reviewed and determined not to 
contain export controlled data 29



Simultaneous VSWIR 
+ Thermal IR 
inversions
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Jay Fahlen, 
Philip G. Brodrick, 
David R. Thompson, 
and others



Solution: Generalized observation noise
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Total observation noise

Measurement noise 
(instrument effects) 
• Photon noise
• Read noise
• Dark current noise

Unknown parameters in the observation 
system
• Model mismatch error
• Calibration error
• Systematic radiative transfer error
• Uncorrelated radiative transfer error

Jacobian WRT unknowns



Estimating model 
uncertainties with 
observed residuals

[Thompson et al., Remote Sens. 
Environ 2018]
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Computationally more challenging but captures the full 
posterior Linearized estimates work well for reflectance terms

Sample-based posterior estimation

[Thompson et al., Remote Sensing of Environment 231, 2019]



Posterior uncertainty decomposition
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Wavelength (nm)



Reflectance estimate vs. in situ 
[Thompson et al., Remote Sensing of Environment 2018]
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Wavelength (nm) Wavelength (nm)
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The observation noise

Total observation noise

Measurement noise (instrument 
effects) 
• Photon noise
• Read noise
• Dark current noise

Unknown parameters in the observation 
system
• Sky view factor
• H2O absorption coefficient intensity
• Systematic radiative transfer error
• Uncorrelated radiative transfer error

Jacobian WRT unknowns

The observation noise term is very flexible.  It typically incorporates both instrument 
noise as well as unknowns in the observation system that are not retrieved.



Mineral feature fitting
• Retrofit the Clark et al. (2003) technique
• Use a library of absorption signatures from 

the USGS
• Fit the continuum-removed feature depth
• The best-fitting signature “wins”
• Handle mixtures with dedicated library 

spectra
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Mineral feature fitting
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Images from Clark et al., Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems, Journal of 
Geophysical Research: Planets, Volume: 108, Issue: E12, First published: 06 December 2003, DOI: (10.1029/2002JE001847) 



Formulation as Tikhonov Regression
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Linear operator 
transforms library 
absorption feature

Continuum-removed 
reflectance 

measurement 

Via reflectance uncertainty 
propagated form L2



Formulation as Tikhonov Regression
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Linear operator 
transforms library 
spectrum

Continuum-removed 
reflectance 

measurement 

Via reflectance uncertainty 
propagated form L2

Uninformed 
mineral depth 

priors

Uninformed 
mineral depth 

priors



Maximum A Posteriori One-of-N spectrum selection
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Posterior probability of mineral m 
given measured continuum-

removed reflectance



Maximum A Posteriori One-of-N spectrum selection
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Posterior probability of mineral m 
given measured continuum-

removed reflectance

Normalization 
factor

Regional or uninformed prior

Log conditional probability density for a given mineral m



Maximum A Posteriori One-of-N spectrum selection
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… test all minerals, and pick the highest probability

Posterior probability of mineral m 
given measured continuum-

removed reflectance

Normalization 
factor

Regional or uninformed prior

Log conditional probability density for a given mineral m



Example maps: iron oxides
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1 km
N

1 km
N

Estimated Feature Depth

Hematite
Goethite

Negative Log Likelihood (Model Error)



Posterior uncertainty compared 
to actual discrepancies 
[Thompson et al., Remote Sensing of Environment 2018]
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Wavelength (nm)

Remote retrieval: heuristic initialization

Remote retrieval: converged solution



Aerosol Optical Depth Uncertainty
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High aerosol loading in India campaign
[Thompson et al., Remote Sensing of Environment, 2019]
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Wavelength (nm)



Universal surface reflectance priors
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A collection of multivariate Gaussians, trained on a diverse library spectra and further 
regularized to enable retrieval of arbitrary surface shapes not previously observed

From Thompson et al., RSE (2018, 2019a, 2019b)
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