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A B S T R A C T

This article proposes a simple and intuitive classification system by which to define full spectral remote sensing
reflectance (Rrs(λ)) data with a quantitative output that enables a more manageable handling of spectral in-
formation for aquatic science applications. The weighted harmonic mean of the Rrs(λ) wavelengths outputs an
Apparent Visible Wavelength (in units of nanometers), representing a one-dimensional geophysical metric of
color that is inherently correlated to spectral shape. This dimensionality reduction of spectral information
combined with the output along a continuum of wavelength values offers a robust and user-friendly means to
describe and analyze spectral Rrs(λ) in terms of spatial and temporal trends and variability. The uncertainty in
the algorithm's estimation of spectral shape is demonstrated on a global scale, in addition to the utility of the
algorithm to discern spectral-spatial-temporal trends in the ocean, on a per-pixel basis for the entire 22 year
continuous ocean color (SeaWiFS and MODIS-Aqua) time-series. This technique can be applied to datasets of
varying multi- and hyper-spectral resolutions, providing continuity between heritage and future satellite sensors,
and further enabling an effective means of elucidating similarities or differences in complex spectral signatures
within the constraints of two dimensions. This straightforward means of conceptualizing multi-dimensional
variability can help maximize the potential of the spectral information embedded in remote sensing data.

1. Introduction

Every parcel of ocean, lake, estuary or river water on Earth has the
potential to exhibit a relatively unique optical ‘fingerprint’ in the ul-
traviolet to near-infrared spectral domain based on the presence, dy-
namic concentration, and widely varying size/shape/composition of
phytoplankton, other suspended particulate matter, and chromophoric
dissolved organic matter (CDOM) present at an observed time and lo-
cation (Kirk, 1994). The distinctive manner in which each of these
water constituents contribute to the total spectral absorption (a(λ),
m−1) and backscattering (bb(λ), m−1) coefficients determines the bulk
inherent optical properties of the water. These optical properties are
collectively manifested through the shape and amplitude of the corre-
sponding spectral remote sensing reflectance (Rrs(λ), sr−1), which
quantitatively describes the color of the ocean (Kirk, 1994). Ocean color
science proceeds via the reverse (inverse) process, namely the estima-
tion of in-water optical properties from a measurement of Rrs(λ).
Consequently, the fundamental measurement of ocean color through Rrs

(λ) enables the synoptic observation of spatial and temporal dynamics
of biogeochemically significant processes in the upper ocean using in-
formation obtainable from space-based radiometers.

Current and heritage global ocean color satellite radiometers typi-
cally include(d) 5–10 visible wavelengths, but an era of hyperspectral
radiometry is emergent. It is reasonable to presume that Rrs(λ) spectra
comprised of more information (e.g. more sampled wavelengths) lend
more degrees of freedom, and thus more possibilities to unravel and
quantify the unique bio-optical nature of that water parcel (Schaepman
et al., 2009; Vandermeulen et al., 2017). However, with each added
layer of spectral information, it becomes increasingly challenging to
accurately characterize the relationships between multiple, simulta-
neous data dimensions (i.e. coincident analysis of the spectral, spatial,
and temporal domains). One feasible approach to examine the varia-
bility of spectral information over time and space is to translate the
layered elements of the spectral domain into a one-dimensional vari-
able of interest, such as chlorophyll-a (O'Reilly and Werdell, 2019), or a
single, characterizing wavelength of a bio-optical property (Austin and
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Petzold, 1981; Maritorena et al., 2002). Constraining multiple layers
(wavelengths) of multi- or hyperspectral Rrs(λ) to one dimension sub-
sequently enables that information layer to be comprehensively ana-
lyzed in relation to its temporal and spatial variability. However, con-
ventional approaches to derive geophysical parameters from ocean
color data utilize only several (~1–4) wavelengths of all available Rrs

(λ) measured by a satellite instrument, discarding potentially useful
information that makes the water optically distinct.

This issue can be partially addressed through the use of spectral
classification techniques, whereby full spectral Rrs(λ) data are me-
chanistically or empirically segregated into discrete classes according to
the spectral shape of Rrs(λ). The concept of spectral classification im-
plicitly assumes that similar shapes of Rrs(λ) are generated from waters
with analogous optical (e.g. a(λ) and bb(λ)) characteristics (Vantrepotte
et al., 2012), making it a potentially useful and complementary tool for
use within bio-optical inversion algorithms (Lubac and Loisel, 2007) or
as a weighting factor for algorithm development (Moore et al., 2014).
Using all of the spectral information ensures that any diagnostic signals
present are considered, and subtle spatio-temporal trends from the in-
tegrated ocean color signal can be examined in relation to global or
regional scale ecological change.

Multiple methods have been employed for the use of spectral clas-
sification of Rrs(λ) in ocean and lake waters, classifying anywhere from
6 to 23 distinct water types across the globe. Various unsupervised
hierarchical and non-hierarchical clustering techniques, such as fuzzy c-
means classification (Eleveld et al., 2017; Moore et al., 2009; Moore
et al., 2014), agglomerative Ward's linkage (Lubac and Loisel, 2007),
iterative self-organizing data analysis technique (ISODATA) (Mélin and
Vantrepotte, 2015), varimax-rotated Principal Component Analysis
(Avouris and Ortiz, 2019), maximum wavelength classification (Ye
et al., 2016), and k-means clustering (Prasad and Agarwal, 2016; Wei
et al., 2016) have proven effective in discriminating water types for
various applications. However, these techniques require large in situ or
simulated training datasets, and thus the estimation and representa-
tiveness of classification types is largely dependent on the character-
istics of these same datasets, which may often be regionally specific. In
addition to the development required to utilize these techniques, the
results of the cluster and/or principal component analyses yield di-
mensionless classes, which require some a priori knowledge of the da-
taset for interpretation.

Perhaps one of the most intuitive and globally adaptable classifi-
cation techniques to date comes from Wernand et al. (2013), which is
based on translating observed Rrs(λ) to chromaticity coordinates that
define the water hue, which is then used to define 21 discrete color
classes used in the historically ubiquitous Forel-Ule scale (Ule, 1892).
This approach of examining the water hue obtained from the weighted
visible spectral response of the human eye has been applied over a wide
variety of water types (van der Woerd and Wernand, 2015, 2018), and
used to distinguish phytoplankton functional types (Dierssen et al.,
2006), and is useful in differentiating water masses that may otherwise
look identical when only examining a limited number of wavelengths
from optical instrumentation output (Jolliff et al., 2018). The water hue
can also be expressed in terms of the “dominant wavelength” of a given
spectrum (Lehmann et al., 2018), providing an instinctual metric by
which to classify optical water types, and is most closely aligned
(though mechanistically distinct) to the approach we present in this
manuscript. A limitation of being constrained by the spectral response
function of the human eye (peak detection at 450 nm, 550 nm, and
600 nm, with minima at 400 nm, 500 nm, and 700 nm; (CIE, 1932)),
however, is inherently precluding the incorporation of ultraviolet (UV)
and near-infrared (NIR) portions of the spectrum, which can encompass
an important portion of biogeochemical variability (Pitarch et al.,
2019). Regardless of methodology utilized, the value in exploiting full
spectral information has been demonstrated repeatedly, and is im-
perative to maximize the utility of a new era of hyperspectral mea-
surements from space (Hestir et al., 2015).

Here, we present a dynamic spectral classification index to quanti-
tatively describe the shape of any multi- or hyperspectral dataset along
a continuum of wavelength values to facilitate the conceptualization of
simultaneous spectral-spatial-temporal variability in ocean color. The
proposed technique can be applied indiscriminately to various water
types, can be extended beyond the visible wavelengths (e.g. ultraviolet
and near-infrared), does not require a training dataset or data trans-
formation, is computationally cost-effective, and perhaps most im-
portantly, produces a mappable output that is simple and intuitive
enough to be interpreted and utilized by seasoned scientists, laypersons,
and end-users alike. The functionality to simultaneously conceptualize
multiple layers of information can not only help reveal ecologically
significant trends, but also aid in the first-order utilization and inter-
pretation of remotely sensed, high spectral resolution datasets, such as
that obtained from airborne campaigns or the future slated National
Aeronautics and Space Administration's (NASA) Plankton, Aerosol,
Cloud, ocean Ecosystem (PACE) satellite mission (Werdell et al., 2019).

2. Materials and methods

The proposed approach to spectral classification was applied to
synthetically derived radiometric data, as well as satellite based
radiometric data from the NASA Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) onboard Orb-View2, the Moderate Resolution Imaging
Spectroradiometer onboard Aqua (MODIS-Aqua), the Visible Infrared
Imaging Radiometer Suite (VIIRS) onboard Suomi-NPP, and the
Hyperspectral Imager for the Coastal Ocean (HICO) onboard the
International Space Station. These data are used to demonstrate various
facets of the functionality and uncertainty of the proposed algorithm, as
well as trends in the spectral-spatial-temporal variability of optical
water masses. The datasets are described first, followed by a description
of the classification approach, and various statistical approaches to
assess uncertainty and trends.

2.1. Satellite data

Level-3 monthly mean global binned images from SeaWiFS
(September 1997 – December 2007; 9 km resolution), MODIS-Aqua
(Jan 2003 – Dec 2019; 4 km resolution), and VIIRS (Jan 2012 – Dec
2019; 9 km resolution) were acquired from the NASA Ocean Biology
Processing Group (OBPG; https://oceancolor.gsfc.nasa.gov/l3). An in-
dividual MODIS-Aqua rolling 32-day composite image (14 Sep – 15 Oct
2018) was also acquired. All visible Rrs(λ) (SeaWiFS λ= 412, 443, 490,
510, 555, 670 nm, MODIS λ= 412, 443, 469, 488, 531, 547, 555, 645,
667, 678 nm, VIIRS λ = 410, 443, 486, 551, 671 nm) were retained.
Satellite data processing followed the OBPG's R2018.0 reprocessing
configuration (https://oceancolor.gsfc.nasa.gov/reprocessing/), which
corrects for suspect late-mission global trends in the blue-band water
leaving reflectance (Lee et al., 2019). The rolling 32-day composite Rrs

(λ) data were also processed to obtain the hue angle product (van der
Woerd and Wernand, 2015; van der Woerd et al., 2016), using the
European Space Agency's Sentinel Application Platform (SNAP) toolbox
(https://step.esa.int). Additional regionally binned time-series data
frequently used to test sensor stability from SeaWiFS, MODIS-Aqua, and
VIIRS were obtained for a north Pacific region (20.0oN - 30.0oN,
179.0oW - 140.0oW) from the OBPG (https://oceancolor.gsfc.nasa.gov/
docs/methods/sensor_analysis_methods/).

Level-2 HICO and MODIS-Aqua data were also obtained from the
OBPG; (https://oceancolor.gsfc.nasa.gov/l2). HICO data were subse-
quently binned and mapped using the l2bin and l3mapgen software
tools packaged as part of the NASA SeaWiFS Data Analysis System
(SeaDAS; https://seadas.gsfc.nasa.gov), in order to match the nominal
spatial resolution of a Level-2 MODIS-Aqua image (1-km), enabling a
direct comparison. All visible Rrs(λ) from HICO (λ = 404–696 nm,
5–6 nm resolution) were retained for subsequent analysis.
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2.2. Synthetic hyperspectral data

A high spectral frequency dataset was acquired, comprised of 720
hyperspectral (5 nm resolution; 350–800 nm) synthetic observations of
Rrs(λ), a(λ), bb(λ), phytoplankton absorption (aph(λ); m−1), detrital
matter absorption (ad(λ); m−1), CDOM absorption (ag(λ); m−1), phy-
toplankton backscatter (bb-ph(λ); m−1), and detrital matter backscatter
(bb-dm(λ); m−1). This synthetic dataset was created to provide a mea-
surement error-free hyperspectral dataset as part of research performed
by the first NASA PACE Science Team (NNH13ZDA001N-PACEST). To
generate the above listed parameters, a synthetic dataset of sea surface
and top of atmosphere (TOA) radiances were constructed by the
Coupled Ocean Atmosphere Radiative Transfer (COART) model (Du
and Lee, 2014) based on the SBDART (Santa Barbara DISORT Atmo-
spheric Radiative Transfer) code (Ricchiazzi et al., 1998), with the
ocean contribution simulated by Hydrolight (Mobley and Sundman,
2008). Water-leaving radiance (Lw) was forward modeled with Hydro-
light, parameterized with a solar zenith angle of 30°, cloudless sky, a
sea surface state corresponding to a wind speed of 5 m-s−1, and realistic
concentrations of optically active water constituents. The Hydrolight
component of the model was constrained using inherent optical prop-
erties (IOPs) whose dynamic ranges and spectral qualities were based
on in situ data acquired from the NASA SeaWiFS Bio-optical Archive
and Storage System (SeaBASS) dataset (https://seabass.gsfc.nasa.gov/).
Certain characteristics of the IOPs were semi-randomly modeled based
on principles outlined in IOCCG Report No.5 (IOCCG, 2006) and sum-
marized in the accompanying PDF document provided along with this
dataset. Atmospheric conditions were simulated by coupling the water-
leaving radiances to an atmosphere with and without absorbing gases,
and with an aerosol optical depth (AOD) that varied between 0.1 and
0.8. Note, while this synthetic dataset may not be inclusive of all pos-
sible combinations of Rrs/IOP variation found in the ocean, the models
used to generate the dataset have been parameterized with a wide
range of field-based measurements, and thus this dataset should be
representative of a wide variety of realistic optical variations found in
natural waters. Data and associated documentation can be found online
at https://doi.pangaea.de/10.1594/PANGAEA.915747 (Craig et al.,
2020).

2.3. Spectral classification technique

We describe the color of the water, and hence group spectral data,
using a weighted harmonic mean of Rrs(λ) wavelengths, constrained by
the relative intensity of reflectance, outputting the ‘Apparent Visible
Wavelength’ (hereafter AVW), in units of nanometers:
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The weighted harmonic mean, as opposed to a weighted arithmetic
mean, is utilized to enable equal weighting of the wavelengths in the
calculation. If the AVW is derived from the weighted arithmetic mean,
data points on the red (higher λ) end of the spectrum are automatically
assigned more weight than points on the blue (lower λ) end of the
spectrum. Using the weighted harmonic mean ensures the weights as-
signed are solely a function of Rrs intensity, and not the relative position
within the visible electromagnetic spectrum. The derivation of the
AVW, at its most fundamental level, is simply a first-order measure of
the dominant color of the water, as determined by the weight that each
measured reflectance channel contributes to the albedo in the visible
(or UV/NIR, if incorporated) range of the spectrum. The output is not in
the form of discrete classes, but instead a continuous gradient of wa-
velength values that represent a quantitative descriptor of weighted
mean color reflected from the water's surface. At any point on this

gradient, we find comparable Rrs(λ) spectra represented by the same
AVW number. Consider, for example, a discrete cluster of Rrs(λ) spectra
acquired from a global MODIS-Aqua 32-day composite (14 Sep – 15 Oct
2018), where AVW values fall between 510.00 and 510.99 nm (Fig. 1).
The global mean spectrum of this cluster, =R ( )rs AVW nm510 (Fig. 1, black
line), and 100 randomly selected normalized spectra with the same
AVW value, Rrs(λ)AVW=510nm (Fig. 1, gray lines), are shown to illustrate
the distribution of spectral shapes represented by AVW = 510 nm.

While the concept is admittedly simplistic in nature, it is surpris-
ingly effective as an index of spectral shape. The location of the AVW
effectively represents the balance point around which reflectance data
is evenly distributed, or more informally, where a Rrs(λ) spectrum
would be perfectly balanced on the tip of a pin if each individual
channel held a physical weight proportional to its intensity. If any slight
weight is added on either side of the spectrum (e.g. a shift in color due
to absorption or backscatter contribution), the balance point (AVW)
will shift, unless it is offset by a proportional counter-balanced weight
elsewhere in the spectrum. In this context, similar Rrs(λ) spectral shapes
tend to converge along the AVW gradient (Fig. 2a), ultimately con-
strained by the finite number of combinations of absorption and
backscattering (Fig. 2b-2h) that create a particular Rrs(λ) spectrum with
an identical balance point. While the AVW serves here as an effective
means of conveying information about spectral shape, it is important to
note that this does not afford information on the absolute magnitude of
a given spectrum (thought the two can often be closely correlated). The
implications of this are further considered in Section 4.1.

2.4. How well does the AVW describe spectral shape?

Since we are relying on the AVW as an index of Rrs(λ) spectral
shape, it is useful to define a measure of whether the spectra categor-
ized by AVW are the same or significantly different from one another.
For this manuscript, we will characterize these differences for a global
MODIS-Aqua 32-day composite (14 Sep – 15 Oct 2018) to serve as an
example of the relative effectiveness with which the AVW can

Fig. 1. 100 random spectra defined by 510 ≤ AVW ≤ 510.99 nm extracted
from a global MODIS-Aqua 32-day global composite (14 Sep – 15 Oct 2018) are
plotted as gray lines, while the thicker black line represents the global mean of
all spectra within the 510 nm AVW cluster. Note, in order to reduce the first
order (amplitude) variability and emphasize variations in spectral shape alone,
the spectral Rrs(λ) values in each cluster have been normalized to the trape-
zoidal integration of Rrs(λ). An animation of this figure stepping in 1.0 nm
increments between 505 and 515 nm further illustrates the sensitivity of AVW
to characterize changes in the spectral shape of Rrs(λ) (https://pace.
oceansciences.org/rse.gif). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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categorically define Rrs(λ) by its spectral shape. Assuming a narrow
range of AVW can be used to define a distinct group of Rrs(λ) that share
similar spectral characteristics (e.g. Fig. 1), we can proceed by quan-
tifying the Type A uncertainty for each MODIS-Aqua wavelength (ua(λ),
ISO and OIML (1995)); as a function of AVW:

= =u AVW
R AVW R AVW

n
( , )

( ( , ) ( , ))
( 1)a

i
n

rs i rs1
2

(2)

where n = the total number of Rrs(λ) spectra that fall within each
1 nm increment of AVW. Note, for statistical analysis of global MODIS-
Aqua imagery, we only defined the uncertainty if the AVW defined at
least 250 spectra. This threshold was implemented as a quality control
measure to mitigate the inclusion of erratic spectral shapes due to errors
in satellite data processing or ocean color atmospheric correction. This
resulted in the exclusion of only 0.01% of the 16,633,461 total global
spectra from the analysis.

2.5. Obtaining continuity across various spectral platforms

Datasets containing disparate band-placement (e.g. hyperspectral
versus SeaWiFS versus MODIS-Aqua versus VIIRS) will unequivocally
yield a discontinuity in AVW values. These differences are to be ex-
pected given the inherent variations in absolute spectral shape output
from different satellite sensors and they demonstrate the sensitivity of
AVW to subtle changes in spectral shape, even if they are a result of
spectral band placement. To correct for this, we use a similar approach
to van der Woerd and Wernand (2015), by which a synthetic hyper-
spectral dataset is utilized to produce sensor specific polynomials. First,
Rrs(λ) for each multispectral sensor are reconstructed from the 720
hyperspectral synthetic spectra, using the corresponding Relative

Spectral Response (RSR) function for each satellite sensor, acquired
from the OBPG (https://oceancolor.gsfc.nasa.gov/docs/rsr/rsr_tables/).
The hyperspectral AVW is calculated from the truncated hyperspectral
synthetic data (Fig. 3a, with only 400–700 nm used in the calculation
for compatibility with the visible range of Level-3 products distributed
with heritage sensors), and compared to the multispectral AVW calcu-
lated for each sensor, and the coefficients from a 3rd or 4th order
polynomial fit are retained and applied to satellite data (Table 1,
Fig. 3b). We demonstrate the correction on a regional north Pacific time
series processed by the OBPG, which includes SeaWiFS, MODIS-Aqua,
and VIIRS, showing the initial offset of AVW values (Fig. 3c), followed
by the convergence of AVW after the correction is applied (Fig. 3d).

2.6. Assessing the utility of AVW across various spectral platforms

The linear trends later presented in this manuscript are derived from
multiple satellite platforms, therefore it is prudent to assess the “fitness-
for-purpose” of the individual mission contribution to the combined
time-series. One way to examine this is by comparing shorter-term
trend patterns from overlapping temporal periods within the satellite
data record, to ensure that there is no substantial disagreement between
disparate sensors (Mélin et al., 2017). In this manuscript, we examine
separate periods of overlapping AVW data for SeaWiFS and MODIS-
Aqua (Jan 2002 – Dec 2006; representing a period of optimal sensor
performance and no data gaps from SeaWIFS) and MODIS-Aqua and
VIIRS (Jan 2012 – Dec 2017; representing the inclusion of reprocessed,
well-characterized R2018.0 MODIS-Aqua data from the OBPG; Lee
et al. (2019)). Following the methodology of Mélin et al. (2017), we
generated a contingency matrix (Sokal and Rohlf, 1995) to compare
trend diagnostics, which defines what percent of the globe

Fig. 2. (a) AVW values were derived from the 720 synthetic Rrs(λ) spectra, yielding a range of values from 412 to 708 nm. Changes in spectral shape of Rrs(λ) from
blue, oligotrophic waters to brown/green coastal waters follow the gradient of AVW values, which represents a gradual change in the central balancing point of the
spectrum. (b-h). The corresponding inherent optical properties (total absorption, total backscatter, and their respective sub-contribution from phytoplankton, CDOM,
and detrital matter) contribute directly to the Rrs(λ) signal, and also follow a unidirectional gradient of AVW values. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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demonstrates agreement/disagreement in the directionality of slope, β.
The Cohen's κ index (Viera and Garrett, 2005) can be computed from
this table, describing the level of agreement (poor/moderate/sub-
stantial) in the directionality of β derived from two sensor overlap
periods. Finally, to more quantitatively assess the differences in the
absolute magnitude of β, we examined the level of significance (p) of a
t-test comparing trends derived from two overlapping missions. In this

context, a lower p-value would equate to a significant difference in
trends. Thus, we can determine what percent of the globe exhibits
significantly different trends (p < .05) when comparing two missions
(Mélin et al., 2017).

Fig. 3. (a) The AVW applied to a spectral subset (400–700 nm) of the hyperspectral synthetic Rrs(λ) dataset was used as the basis to form (b) sensor specific
conversion coefficients for MODIS-Aqua, SeaWiFS, and VIIRS. A cross-mission regional time-series in the north Pacific Ocean was used for temporal trend analysis,
showing (c) the discontinuity in AVW values without correction, and (d) the subsequent convergence of AVW values after the coefficients are applied. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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2.7. Time series trends

Temporal linear trends across 22-years of seasonally detrended
AVW values from SeaWiFS (Sep 1997 – Dec 2002), MODIS-Aqua (Jan
2003 – Dec 2019) are determined using an iteratively reweighted least
squares robust regression with a bisquare weighting function that mi-
tigates the biasing influence of outlier values (see robustfit MATLAB
function (Dumouchel and O'Brien, 1992; Holland and Welsch, 1977).
Prior to determining the linear trends, the annual cycle of AVW was
determined as the monthly averages of the combined time-series, and
the data were de-seasonalized by subtracting the contribution of the
corresponding monthly climatology, thereby reducing the impacts of
autocorrelation associated with strong seasonality. The derived slope
(β) from the robust regression (only performed if at least 3 months of
data per year are present) is used to determine ΔAVW/Δtime, which is
interpreted as a metric of directional shift in spectral shape as a func-
tion of time. A positive β, for example, indicates a red shift (that is, a
stronger contribution from longer wavelengths). All β terms with non-
significant probability values (p > .05; derived from the robustfit stats
function) are excluded from the generated maps, and the standard error
(se, derived from MATLAB robustfit function) of the regression is re-
tained as an additional quality metric.

3. Results

3.1. Examining global Rrs variability

The AVW algorithm was applied to a rolling 32-day composite
global image retrieved from MODIS-Aqua (Fig. 4a), and the corre-
sponding R ( )rs AVW were identified for each 1 nm increment of AVW
(Fig. 4b). The distribution of AVW values range along a gradient from
448 nm (very oligotrophic waters with a strong signal in the blue end of
the spectrum) to 575 nm (very turbid waters with a strong signal in the
red end of the spectrum). Regional extractions (Fig. 4c-4e) are shown to
emphasize the detail in the gradational change of the AVW index.

Given the nature of the gradational output, spectral shape un-
certainty is best determined for each individual MODIS-Aqua channel
across the range of AVW values, in order to quantify how well nor-
malized Rrs(λ)AVW are represented by the corresponding R ( )rs AVW (i.e.
how representative is Fig. 4b in characterizing the global distribution of
spectral shapes?). Below, we report variance (in terms of Type 1 un-
certainty and % coefficient of variation, % CV) of Rrs(λ)AVW for each
MODIS-Aqua channel, in relation to its respective R ( )rs AVW spectra. We
found the analysis more informative than, for example, spectral simi-
larity indices, as the chosen metrics describe the spectral dependence of
shape deviations. Figs. 5a shows that Type 1 uncertainty is generally
highest for the 412 nm channel, shifting to higher uncertainty in
547 nm and 555 nm channels in more turbid waters. All channels ex-
hibit the highest amount of collective uncertainty in the adherence to a
defined spectral shape in predominately green waters, characterized as
AVW > 500 nm. On average, the uncertainty at each channel is< 5%
for blue waters (AVW < 480 nm), and < 10% for green/red-shifted

waters. Note, the high % CV for far red and far blue channels are re-
presentative of much lower average values in reflectance (Fig. 4b). The
origin of the overall uncertainty and its implications are discussed
further in section 4.1.

3.2. Examining Rrs trends in the spatial domain

Since the coefficients used to derive cross-sensor (hyperspectral
equivalent) AVW are computed from an ideal synthetic dataset, it is a
useful exercise to validate these coefficients against a less ideal dataset
that likely contains spectral shapes from which the coefficients have not
been trained. Thus, as an initial test on the spatial integrity of the AVW,
we sought to test the algorithm on HICO imagery, representing an in-
dependent spatially resolved hyperspectral dataset with real satellite-
based uncertainties resulting from calibration errors, atmospheric cor-
rection, land/cloud adjacency effects, and potential bottom reflectance
effects that can impact the spectral shape of Rrs(λ) (Ibrahim et al.,
2018). First, we spatially co-registered a HICO (52 visible bands) and
MODIS-Aqua (10 bands) image to 1 km spatial resolution in order to
enable direct comparisons. To initiate the check on the sensors' derived
polynomials, we constructed a ‘false’ MODIS image, in which HICO data
(interpolated to 1 nm spectral resolution) were spectrally subsampled
to MODIS wavelengths (using the RSR of MODIS-Aqua). The poly-
nomials derived from the synthetic dataset were applied to the con-
structed MODIS-Aqua image to create a hyperspectral equivalent AVW
from MODIS-Aqua bands, and then directly compared to the AVW va-
lues derived from the HICO image (Fig. 6). This first check essentially
tells us how well the idealized synthetic dataset represents the range of
data found in the HICO image. Fig. 6 shows a close relationship
(r2 = 0.9995) between the HICO data and the constructed MODIS-Aqua
data, lending confidence that a cross-comparison of AVW values de-
rived from MODIS-Aqua and HICO would be meaningful.

We next proceed with calculating the polynomial-corrected AVW for
the actual coincident MODIS-Aqua and HICO images (Fig. 7a, b), then
examine the difference of the two images (Fig. 7c). Given the spatial
integrity of the AVW algorithm demonstrated across the two spectral
resolutions (Fig. 6), and minimal temporal disconnect (note, the two
images are temporally disconnected by only 16 min in overpass time),
the differences seen in the two images should solely be a function of
absolute differences in spectral shape as detected from the disparate
sensors. The extracted spectra from three points of interest corroborate
the patterns shown in the difference image, e.g. where AV-
WHICO > AVWMODIS (Fig. 7d), the HICO spectra is red-shifted relative
to MODIS-Aqua, where AVWHICO < AVWMODIS (Fig. 7f), the HICO
spectra is blue-shifted relative to MODIS-Aqua, and where AV-
WHICO = AVWMODIS (Fig. 7e), the HICO and MODIS-Aqua spectral
matchup is nearly equivalent. Regardless of what mechanisms cause the
differences between the two images (e.g. contrasting SNRs or potential
atmospheric correction errors), the dimensional reduction of spectral
information through AVW enables the functional examination of the
directionality and magnitude of the sensor disparities within the con-
straints of a two dimensional image.

Table 1
Polynomial coefficients to calculate a hyperspectral-equivalent AVW are listed for MODIS-Aqua, SeaWiFS, and VIIRS. Though not included in our analysis, given the
significance of the Sentinel-3 platforms for continuity in the ocean color time-series, we also include coefficients for the Ocean and Land Color Instrument (OLCI).
Note, for compatibility with the distribution of Level 3 Rrs(λ) products distributed through OBPG (which are limited to the visible range of the spectrum), the OLCI
coefficients do not include contribution from the 709 nm band.

Sensor Polynomial Coefficients Intercept

x4 x3 x2 x

MODIS N/A −1.19797 × 10−5 1.81042 × 10−2 −7.96725 1.45896 × 103

SeaWiFS 1.83929 × 10−7 −4.22090 × 10−4 3.55860 × 10−1 −1.29806 × 102 1.77270 × 104

VIIRS −1.22955 × 10−7 2.50561 × 10−4 −1.93331 × 10−1 6.80274 × 101 −8.78677 × 103

OLCI −1.55476 × 10−8 4.16732 × 10−5 −4.04673 × 10−2 1.77929 × 101 −2.50184 × 103
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3.3. Assessing the fitness-for-purpose of multi-mission trends in AVW

Proceeding with the assurance that AVW is a sensitive metric to
changes in spectral shape, a careful merging of the satellite record
would enable an analysis of 22 years of continuous ocean color trends.
However, merging multiple satellite platforms to construct a continuous
time-series analysis must be treated with care, as there are spatially and
seasonally dependent biases that may be introduced as a result of

varying uncertainties between the platforms (Mélin, 2016). In order to
ensure an added degree of confidence in our ensuing trend analysis, we
include a series of diagnostic metrics that assess how much agreement
there is between statistics derived from the overlapping time-series of
MODIS-Aqua and SeaWiFS (hereafter denoted as M-S; Jan 2002 – Dec
2007), as well as MODIS-Aqua and VIIRS (hereafter denoted as M-V;
Jan 2012 – Dec 2017). Essentially, if there are no glaring discrepancies
during periods of overlap coverage, we can be more confident that the

Fig. 4. (a) Global map of AVW for a 32-day global composite (14 Sep – 15 Oct 2018). (b) Integral-normalized Rrs(λ) spectra, corresponding to the 1 nm AVW clusters
defined for the global composite. Zoomed regions of interest show details of the AVW gradients along the (c) U.S. East Coast, Great Lakes, and northern Gulf of
Mexico, (d) southern South America, and (e) the Caspian Sea.

Fig. 5. For each MODIS-Aqua wavelength, we quantify the (a) Type 1 uncertainty and (b) % CV as a function of 1 nm incremental R ( )rs AVW spectra derived from the
MODIS-Aqua 32-day global composite (14Sep – 15Oct 2018). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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merged time-series is not significantly impacted by sensor-specific un-
certainties.

The first metric involves constructing a contingency matrix (Sokal
and Rohlf, 1995), in which we compare the global linear trends (slope
of the regression, β) for SeaWiFS and VIIRS relative to the corre-
sponding β for MODIS-Aqua during the respective temporal overlap
periods. We separate these trends into three basic categories: non-sig-
nificant trends (n.s., p > .05), significant positive trends (β ≥ 0,
p < .05), or significant negative trends (β ≤ 0, p < .05) (Table 2).
The contingency matrix summarizes the percent of the globe in which
all combinations of these three trend diagnostics apply, enabling a
simplistic comparison of trend behavior across sensor platforms. The
summation of the diagonal elements in the table (where all three di-
agnostics agree for two sensors) shows that MODIS-Aqua and SeaWiFS
are in agreement over 79.3% of the globe, while MODIS-Aqua and
VIIRS are in agreement over 82.0% of the globe. The majority of the
agreement is in the form of non-significant trends (63.3% for M-S,
60.3% for M-V), which is generally expected, given the short temporal
interval of overlap. While the absolute agreement in the directionality
of significant trends (16.0% for M-S, 21.7% for M-V) is relatively
comparable to the amount of cases in which one sensor detects a sig-
nificant trend while the other sensor detects a non-significant trend in
the same direction (20.7% for M-S, 18.0% for M-V), it is notable that
there were no instances in which a significant trend of opposing di-
rectionality was detected between two sensors.

The Cohen's κ index can be computed from the values of the con-
tingency matrix, in which we translate the proportional contribution of
observed agreement (ρo) between two missions relative to the propor-
tion that occurred by chance alone (ρc). If we notate the contingency
matrix as (ρi,j)i,j = 1,n where n = the number of diagnostics (in this case
3, n.s., (p > .05), (β≥ 0, p < .05), and (β≤ 0, p < .05), we compute
Cohen's κ index as:

=
1
o c

c (3)

where ρo represents the summation of the diagonal elements (where
both mission trends agree, =i

n
i j1 , ), while ρc represents the sum of the

probabilities of chance agreement, = = =( )i
n

j
n

i j k
n

k j1 1 , 1 , (Mélin

et al., 2017). The Cohen's κ index indicates moderate agreement be-
tween MODIS-Aqua and SeaWiFS (κ = 0.51) and substantial agreement
between MODIS-Aqua and VIIRS (κ = 0.62) (Viera and Garrett, 2005).

Finally, for each temporally overlapping time-series, the level of
significance of a t-test between two pairs yields informs the degree to
which trends differ (Mélin et al., 2017). In this case, a significant p-
value (p < .05) would indicate that there is a significant difference
between the derived trends. For M-S, significant differences were uni-
formly distributed over 1.7% of the global domain, and for M-V, sig-
nificant differences were uniformly distributed over 0.9% of the global
domain. While there are potential mission-specific artifacts present
(Mélin, 2016), the results (moderate to substantial agreement between
missions, high coherence in trend directionality, and low % significant
differences) nonetheless suggest that the constructed 22-year record of
AVW is fit for analysis of temporal trends, however additional cau-
tionary remarks on interpretation of these trends are further explored in
the discussion. Given that our fitness-for-purpose analysis showed that
there is substantial agreement between MODIS-Aqua and VIIRS, we
opted to use the MODIS-Aqua time series in its entirety rather than
switch to VIIRS, since MODIS-Aqua contains twice as much spectral
information, and thus is a more sensitive metric of spectral change.

3.4. Examining Rrs trends in the spatial and temporal domain

Here, we extend the examination of AVW to the 22-year SeaWiFS
(1997–2003) and MODIS-Aqua (2003–2019) time series, as a case study
to demonstrate the utility of using AVW to emphasize the spatial dis-
tribution of linear temporal trends in spectral variability. Essentially,
the significant (p < .05) slope of a robust regression for 22 years of de-
trended AVW values (monthly time resolution) is plotted for every
pixel, enabling the spatial mapping of ΔAVW/Δyear over the globe
(Fig. 8a). The extracted time-series plots of AVW (Figs. 8e-8 g) were
generated to highlight the nature of some of these trends (note: a robust
evaluation of mechanisms for observed trends exceeds the scope of this
analysis). Note, for trend statistics, a continuous time series of data
from SeaWiFS (Sep 1997 – Dec 2002) and MODIS-Aqua (Jan 2003 – Dec
2019) were used, while the overlap periods of SeaWiFS (Jan 2003 – Dec
2007) and VIIRS (Jan 2012 – Dec 2020) with MODIS-Aqua are only
shown to emphasize spectral continuity across the sensors over time.
The slope (ΔAVW/Δyear) and standard error (se) of the robust regres-
sion are provided for each extracted area (note, a global plot of se as
well as se/slope can be found in Appendix A). The se can be thought of
as a measure of the precision with which the regression coefficient is
measured (e.g. a low se/slope means the trend is not likely zero), and
helps determine the relative degree of confidence in a given trend.
Figs. 8b, 8e demonstrate an illustrative quality control measure,
showing the relative spatial-temporal stability of AVW values from
SeaWiFS/MODIS-Aqua/VIIRS in the oligotrophic Pacific gyre near Ha-
waii. Other areas display strong negative linear trends such as Lake
Michigan (Figs. 8c, 8f), while other areas display positive linear trends
such as the Patagonian Shelf (Figs. 8d, 8 g). Note, the substantial
agreement in the regionally extracted time-series between VIIRS and
MODIS-Aqua (Figs. 8e-8 g) adds additional confidence to the fitness-for-
purpose determination, given that these examples cover stable waters at
MOBY, as well as two distinct optically complex environments (one
freshwater, one marine). The corresponding time-series of de-trended,
spectrally congruent MODIS-Aqua and SeaWiFS Rrs channels (λ = 412,
443, 488 (MODIS-Aqua)/ 490 (SeaWiFS), 555, 667 (MODIS-Aqua)/
670(SeaWiFS) nm; Figs. 8 h-8j) corroborate the agreement that a
diretional (or non-directional) shift in AVW equates to a directional (or
non-directional) shift in normalized Rrs(λ), and provides more detail on
the nature and evolution of these spectral shifts.

Fig. 6. A comparison of 3094 coincident AVW values derived from HICO and a
‘false’ MODIS-Aqua image constructed from HICO data. This comparison serves
as validation for the sensor-specific polynomials derived from the synthetic
dataset applied to MODIS-Aqua data. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)
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3.5. Examining the spectral-spatial-temporal variability of Rrs(λ)

For enhanced detail in the temporal domain, we can conceptualize
simultaneous spectral-spatial-temporal variability of the SeaWiFS
(1997–2003) and MODIS-Aqua (2003−2020) time series through the

generation of an AVW Hovmöller anomaly diagram (Fig. 9b) across the
North Atlantic 45o parallel (Fig. 9a). The anomalies were generated by
subtracting AVW from the respective monthly climatology (e.g. all AVW
values in September are subtracted from the average of monthly Sep-
tember values from 1997 to 2019). Values are averaged from 44.5o N –
45.5o N and plotted as a function of time across the north Atlantic basin
(63.0o W to 1.25o W). The temporal evolution of AVW across the North
Atlantic shows an apparent increase in AVW along the central-western
Atlantic from 2014 to 2018, and an anomalous summer bloom in 2012
representing a red shift in Rrs(λ) spectra (Fig. 9c), and an AVW decrease
in 2005–2006, representing a blue-shift in Rrs(λ) (Fig. 9d).

4. Discussion

4.1. Characteristics of the AVW algorithm

In this manuscript, we present a dynamic technique for simplistic

Fig. 7. The mapped AVW product for (a) HICO and (b) MODIS-Aqua on August 26, 2012 are qualitatively similar, but a (c) difference image reveals areas where the
respective spectra diverge from one another. The image serves as a means to spatially map where HICO spectra are (d) red-shifted, (e) equivalent, or (f) blue-shifted
relative to MODIS-Aqua. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Contingency matrix directly comparing temporal linear trends derived from
SeaWiFS and MODIS-Aqua (Jan 2003 – Dec 2007), as well as VIIRS and MODIS-
Aqua (Jan 2012 – Dec 2017). The percentage values indicate the percent global
coverage in which two diagnostics.

% SeaWiFS VIIRS

MODIS-A n.s. β ≥ 0 β ≤ 0 n.s. β ≥ 0 β ≤ 0

n.s. 63.3 5.7 3.2 60.3 7.0 2.9
β ≥ 0 8.5 11.0 0 4.8 12.0 0
β ≤ 0 3.3 0 5.0 3.3 0 9.7
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Fig. 8. (a, b, c, d) Spatial maps of 22-year robust linear trends in AVW derived from continuous SeaWiFS (Sep 1997 – Dec 2012) and MODIS-Aqua (Jan 2013 – Dec
2019) data for the globe and extracted subregions, representing a comprehensive spectral-spatial-temporal characterization of all components of ocean color data. A
positive slope in the AVW/year (i.e. spectral shift towards longer wavelengths) is depicted as red on the map, while a negative slope in the AVW/year (i.e. spectral
shift towards shorter wavelengths) is depicted as blue on the map. For quality control and demonstrative purposes, extracted time-series of de-trended (monthly)
AVW (location is marked as a black dot on the subregion maps) are shown for (e) the Marine Optical BuoY (MOBY) site off the coast of Hawaii, (f) Lake Michigan,
U.S.A., and (g) the Patagonian Shelf. The slope and standard error of the regression are displayed on each time-series. The SeaWiFS data (green dots) and VIIRS data
(red dots) show similar trends for the overlap period with MODIS-Aqua (blue dots), providing additional quality assurance for cross-sensor comparison. The
corresponding time-series of normalized Rrs(λ) (h, i, j) for each extracted area demonstrates the manifestation of spectral shape change over time (e.g. For Lake
Michigan, blue-shifted waters exhibit a steady temporal increase in 410, 443, and 490 nm reflectance, and a decrease in 555 and 670 nm reflectance).
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optical water type classification that can be adapted to any spectral
dataset to produce a one-dimensional descriptor of spectral shape. The
distinct advantage of utilizing AVW over discrete spectral classification
lies in the derivation of quantitative spectral shape values output along
a continuum, providing a transitional gradient with which to analyze
trends/differences in optical water types (or sensor output coherence,
e.g. Fig. 3) across spatial (Fig. 7) and temporal (Fig. 8) boundaries, or

both (Fig. 9). Classical clustering methods can carry the burden of re-
lying on an “optimal” definition of output classes, requiring in-depth or
a priori knowledge of the dataset to support the initiation of output, and
subsequently interpret results. By contrast, the sequence of AVW output
has meaning in itself (e.g. more red-shifted waters are unequivocally
represented by higher numbers, and blue-shifted waters are unequi-
vocally represented by lower numbers), and thus we overcome the

Fig. 9. (a) Spatial map of 22-year robust linear trends in AVW derived from SeaWiFS (1997–2003) and MODIS-Aqua (2003–2020) over the 45o parallel across the
North Atlantic ocean. (b) Corresponding Hovmöller anomaly diagram of AVW across the 45o parallel. Extracted Rrs(λ) spectra (congruent MODIS-Aqua/SeaWiFS
channels) show the 22-year monthly climatology spectral shape in relation to (c) the Rrs(λ) spectra during an anomalous 2012 summer bloom, as well as (d)
anomalously blue-shifted waters in May 2005. Dimensional reduction of spectral-spatial-temporal information makes these trends easier to identify. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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limitation of having to minimize/optimize the output to make it more
comprehensible. Notably, this negates the absolute necessity to parti-
tion the output in order to understand/interpret first-order trends in the
data (e.g. is this water parcel more blue/more red?). Though traditional
classification schemes are not typically expressed in terms of a grada-
tional or even high frequency output, the AVW nevertheless categori-
cally defines (or classifies) Rrs(λ) according to a shared characteristic
(the weighted harmonic mean of Rrs(λ) wavelengths). By nature of the
calculation, the AVW exists as an inherent characteristic of the Rrs(λ),
meaning that, unlike many classical clustering methods, the AVW of a
parcel of water is not dependent on the characteristics of the dataset as
a whole. This advantage makes the AVW particularly well suited for
non-specialists, who may desire a non-subjective classifier which
characterizes intuitive spectral information into a simple, quantitative
metric. By the same token, it also makes AVW well suited to specialists
who may endeavor to derive more universal weighting functions for
algorithm development based on an optical water type classification
that 1) behaves more like a dynamic ocean property, 2) does not need
to be trained, and 3) outputs consistent values across multiple datasets.

The concept of using a gradational index for optical water type
classification is not novel. Most notably, extensive analyses leading to
the development and utilization of the hue angle product (van der
Woerd and Wernand, 2015, 2018; van der Woerd et al., 2016; Wernand
et al., 2013) provides many of the same benefits (as well as similar
uncertainties) that AVW proposes. Though there are some mechanistic
differences in the derivation of the two, a global comparison of the two
products reveals a very coherent relationship (Fig. 10a). On average,
each 1-nm increment of AVW has a mean absolute deviation of 3.09 hue
angle degrees. Though the AVW algorithm design is less complex in its
calculation and does not represent the “true color” as perceived from
the human eye, it does offer the unique flexibility to extend the con-
tribution of the UV and NIR into the classification/indexing of spectral
signatures. This may be of particular importance in classifying areas
with high CDOM contribution, or conversely, high red-edge, NIR con-
tribution (e.g. harmful algae blooms, dense sediment plumes). Ad-
ditionally, the ability of the AVW approach to consider a wider spectral
range makes it particularly suitable for analyzing data from NASA's
upcoming PACE mission that will extend ocean color measurements to
the near UV and NIR/SWIR spectral regions (Werdell et al., 2019). The
lack of spectral response sensitivity of the human eye may be the reason
for the cubic parabola shape of the relationship between the two

products (i.e. higher range of AVW values relative to hue angle for ex-
treme blue and red-shifted waters), as the 410 nm and 678 nm MODIS
channels are minimally weighted by the hue angle, but are equally
weighted in the AVW. Disparities in spectral band detection are also
exemplified by the deviations in the relationship between AVW and
chlorophyll-a (Fig. 10b), as the latter is the product of two simultaneous
wavelengths, and not the entire spectrum. Even so, close similarities are
found between AVW and chlorophyll-a in blue-shifted Case-1 ocean
waters, where chlorophyll-a (and co-varying CDOM) are the primary
drivers of color variability, with increased deviation between the two in
red-shifted waters, where there are presumably multiple non-covarying
drivers of optical variability.

With any optical classification technique, there are limitations and
uncertainties associated with spatial and temporal heterogeneity blur-
ring the true optical signal, as well as the multi-spectral resolution of
most satellite sensors not capturing the range of optical variability
(Mélin and Vantrepotte, 2015; Vandermeulen et al., 2017). Hence,
while not all water types are explicitly represented in this analysis, the
AVW may be applied to any variety of datasets with varying temporal/
spatial/spectral characteristics. However, it is important to note that
this quantitative output is specifically relevant to the spectral shape of
reflectance, and does not yield information on the amplitude of re-
flectance (water brightness). While the absolute variation of Rrs(λ)
amplitude can be highly dependent on the contribution of back-
scattering components of the water (Lubac and Loisel, 2007; Toole and
Siegel, 2001), by contrast, the spectral shape is more strongly impacted
by components contributing to the absorption coefficient, such as
phytoplankton, detrital matter, and CDOM (Sathyendranath et al.,
1989). As a result, some spectral classes will feasibly contain waters
with varying concentrations of particles such as sediments, that lead to
the fluctuation in Rrs(λ) amplitude, but less of a fluctuation in shape
(Mélin and Vantrepotte, 2015). Thus, assessed independently, the
spatial-temporal trends in AVW likely have a higher sensitivity to
qualitative changes in the types of components contributing to the
optical signal, and less the quantity of components, though the two are
often closely linked.

We can optionally enhance the use of AVW by subdividing the
clustered spectra according to the Rrs wavelength of maximum re-
flectance (λMAX). While not pertinent for algorithm utility, this addi-
tional layer of maximum classification can further mitigate variability
associated with instances of marginally disparate spectral signatures

Fig. 10. A global comparison of (a) AVW versus hue angle and (b) AVW versus chlorophyll-a for a MODIS-Aqua 32-day global composite (14 Sep – 15 Oct 2018). The
mean (blue dots) and mean absolute deviation (red lines) overlay all global data points (gray dots). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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yielding similar AVW numbers (Fig. 1, 11a). Similar intra-class spectral
shape variance was reported for the hue angle product, especially for
coastal waters (Lehmann et al., 2018; Pitarch et al., 2019), which is
where we find the highest spectral shape uncertainty for global ima-
gery. The uncertainty arises as a result of one portion of the spectral
signature yielding a slightly higher/lower weight that is counter-
balanced by another portion of the spectral signature, resulting in the
same weighted mean. Otherwise stated, more than one spectral shape
can result in the same weighted harmonic mean value, therefore an-
choring the AVW output to λMAX reduces the amount of spectral de-
viation for a given AVW. In Fig. 4b, these disparities are averaged and
directly contribute to the level of uncertainty described in Fig. 5a and b.
Fig. 11a, on the other hand, represents a duplication of Fig. 4b, with the
only difference being that the AVW output is categorized according to
λMAX., and these disparities in spectral shape within a given AVW value
are more efficiently partitioned. A histogram (Fig. 11b) illustrating the
frequency of global AVW distribution partitioned by λMAX demonstrates
which AVW values are more prone to having overlapping spectral
shapes (primarily green waters). Note, in most cases, this overlap has a
relatively marginal impact on the bulk spectral shape. This is clearly
demonstrated by Fig. 1, in which several Rrs(λ) spectra are character-
ized by either λMAX. = 531 nm and λMAX. = 547 nm, but nonetheless
exhibit relative homogeneity in bulk spectral shape.

Note, while we found that this subdivision could further reduce the
uncertainty for all wavelengths, this also represents another added
layer of information, which presents inherent difficulties when con-
ceptualizing or analyzing results in two dimensional space. However, in
the case that one or more dimensional constraints can be alleviated (e.g.
using AVW for algorithm development/deriving weighting functions),
the subdivision of AVW according to λMAX can be utilized as a method
for further discriminating more subtle differences between spectral
shapes. In any case, the utility of AVW as a first order index of spectral
shifts in areas of higher uncertainty (such as coastal waters) does not
hinge on the maximum classification approach. There is, however, an
implication that the potential for mis-identification of spectral shapes
via the AVW approach can lead to potential Type II errors (false ne-
gatives, e.g. a spectral shape changes occurs, but is not detected), but
not Type I errors (false positives, e.g. a spectral shape change detected
when there isn't one), since any change to the AVW number represents a
true shift in the balance point of the Rrs(λ) spectrum. Put simply, there

are instances in which slightly different spectral shapes may yield the
same AVW number (and thus a trend would go undetected), but any
positive/negative shift in AVW will unequivocally represent a re-
spective red/blue directional shift in the spectrum as an inherent
function of deriving the weighted harmonic mean. As an additional
precautionary measure, the use of an iteratively re-weighted least
square regression with a bisquare weighting function adds a layer of
assurance that the derivation of temporal trends are less susceptible to
influence from acute random error/outliers.

4.2. Spectral-spatial-temporal trends

Reliably defining the full spectrum of Rrs(λ) in terms of a single
number affords the opportunity to examine trends of spectral shape in
both the spatial and temporal domain. In term of the spatial domain,
the propensity for spectral clustering around a given AVW value can be
exploited to match spectra of similar shapes, even if they are of dis-
parate spectral resolutions (Figs. 3, 7). A promising benefit of the in-
tegration of the full spectrum in the AVW calculation is having the
flexibility to monitor spectral drifts in shorter-term intervals than in-
orbit calibrations (e.g. time-series of lunar calibrations), or in the ab-
sence of in-orbit calibration altogether (e.g. CubeSat missions). By the
very nature of the calculation, any deviations in the spectra are readily
manifested as a change in the weighted mean, and thus, AVW can serve
as a simplistic diagnostic tool to monitor the directionality and mag-
nitude of shifts in the spectral time series in spectrally stable waters,
such as at the Marine Optical BuoY (MOBY) or regionally averaged
ocean gyres. This has useful implications that would enable cross-sensor
comparison of full-spectral performance, which will be imperative in
efforts to derive ocean color continuity moving from multi-spectral to
hyperspectral satellite monitoring. It is worth noting that spectrally
dependent temporal drifts may occur as function of satellite calibration
issues or sensor degradation (Meister and Franz, 2014), and have the
potential to be manifested in the AVW signal if not corrected for
(Stumpf and Werdell, 2010). The performance of vicarious gain ad-
justment is generally examined one channel at a time, and while hy-
perspectral radiometry is not exempted, having a means to determine a
metric of spectral integrity can be useful to promptly elucidate sensor
waveband drift. Without an integrated picture of total Rrs(λ) variability,
it can be challenging to discern optically significant trends using a

Fig. 11. (a) Integral-normalized R ( )rs AVW spectra derived from a 32-day global composite (14 Sep – 15 Oct 2018), with the output additionally portioned according
to the wavelength of maximum reflectance (λmax). The addition of maximum classification enables a more effective partitioning of spectral shapes in instances where
two or more shapes are represented by the same AVW. (b) The global frequency of this may overlap is plotted as a function of AVW, revealing areas of spectral
ambiguity within the AVW index that can be alleviated with maximum classification.
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single wavelength (Jolliff et al., 2018). This underscores the importance
of inter-relating multiple dimensions of data, as it is not the absolute
reflectance of a single channel (or even the ratio of two channels), but
how all channels change relative to one another that determines it
unique and intrinsic color, and creates a unique optical water type.

Extending this analysis to a pixel-by-pixel examination of the globe
represents a 22-year full spectral-spatial-temporal analysis of ocean
color variability from September 1997 to December 2019. While the
mechanisms responsible for these spectral shifts extend beyond the
scope of this manuscript, some verification of the direction of the de-
rived AVW trends remains prudent to provide a quality control check on
the performance of the algorithm. On a global scale, many of the
temporal shifts in Rrs(λ) spectral shape (Fig. 8a) are related to the
spatio-temporal distribution of chlorophyll-a shifts over a similar dec-
adal time frame (Dunstan et al., 2018; Gregg and Rousseaux, 2014;
Henson et al., 2010; Mélin et al., 2017; Siegel et al., 2013; Vantrepotte
and Mélin, 2009), which is to be expected given the inherent re-
lationship between chlorophyll-a and water color in Case 1 waters
(Fig. 10b). As anticipated, no trends are discernable in the MOBY time-
series (Fig. 8e), providing a useful check on the stability of AVW over
time in optically stable, oligotrophic waters, as well as a verification of
the vicarious calibration of the satellite instruments. The extracted re-
gions corroborate larger shifts documented in the environment over
decadal time frames, whether it be an increase in water clarity in Lake
Michigan as a function of invasive zebra mussels (Binding et al., 2007)
(Fig. 8f), or a change in chlorophyll-a concentrations on the Patagonian
Shelf due to an increased frequency of shelf break upwelling (Marrari
et al., 2017) (Fig. 8 g).

Interestingly, an early iteration of this analysis, using only 16 years
of the MODIS-Aqua time-series, revealed a strong red-shift in ocean
color spectra in the eastern North Atlantic (40o – 55o N, 30o - 10o W),
corroborated by strong positive temporal trends in the chlorophyll-a
record over the same time-frame (Dunstan et al., 2018). While still
present in the map we present in this manuscript, the magnitude of this
trend was substantially dampened with the addition of only 6 years of
SeaWiFS time-series dating back to 1997. Hence, the extracted 45o

parallel translated into a Hovmöller diagram enables a closer inference
of the temporal evolution in these 22-year spectral trends (Fig. 9b).
While this diagram shows increasing frequency and duration of red-
shifted spectra between 30o W and 10o W occurring more frequently
beginning in 2011, and persisting longer in the year, from 2015 –
present, the magnitude of this trend was likely artificially amplified by
the appearance of anomalous blue-shifted spectra in 2005 and 2006, at
least in the context of the MODIS-Aqua time-series. Thus, we impart a
strong note of caution in the interpretation of these trends for two
reasons: 1) over the time scales observed in this study (22 years of
continuous ocean color time series), it is challenging to reconcile long-
term trends from that of natural variability including the effect of short-
term oceanographic variations (e.g. marine heatwaves) and multi-dec-
adal oscillations (Beaulieu et al., 2013; Cai et al., 2015; Henson et al.,
2010; Levitus et al., 2009), and 2) the statistical definition of sig-
nificance (p < .05), by which our data are filtered, does not always
unequivocally represent a significantly meaningful trend (Bryhn and
Dimberg, 2011), though we impart some additional quality control by
determining the standard error of the regression relative to the mag-
nitude of the trend as a metric of how reliable a trend may be (Figs. 8e-
8 g, Appendix A). For example, the trend in Lake Michigan (Fig. 8f) has

a se representing 5% of the magnitude of the trend, and is considered
more reliable than the trend along the Patagonian Shelf (Fig. 8 g),
which exhibits more inter-annual variability and thus a se representing
15% of the trend magnitude. This does not contravene the spatial dis-
tribution of shifts in the weighted harmonic mean of Rrs(λ) spectra, but
utilizing metrics to examine the reliability of a trend remains a prudent
practice. Nevertheless, we emphasize that the intent of the AVW is to be
used less in terms of a bio-physical parameter, and more as a tool to
help elucidate first-order trends in full spectral ocean color data, which
always warrant closer examination for each case in order to fully un-
derstand the mechanisms responsible for the variation.

5. Conclusion

This study presents a technique to promote the maximum utilization
of spectral information for the simultaneous determination of spectral-
spatial-temporal trends in ocean color data. We exploit the weighted
harmonic mean of Rrs(λ) wavelengths to yield an intuitive output along
a continuum of dominant color values, making the high number of class
outputs more manageable and comprehensible when examined in
multi-dimensional space. We emphasize the utility of using spectral
classification as a useful metric of Rrs(λ) change along various temporal
and spatial scales, and encourage the use of this or other classification
techniques for describing any large spectral dataset (e.g. in-line in-
herent optical properties and hyperspectral radiometry) to unravel
spectral variability over large time and space scales. Minimal un-
certainty (~5% in blue water, ~10% in green waters) introduced from
the algorithm estimation of spectral shape do not appear to impede the
analysis of first-order variability in spectral trends, given that the un-
derlying shifts in the spectral weighted mean inherently represent a
change in the spectral distribution of Rrs(λ). At the very least, this
technique enables the simple and effective targeting of relative devia-
tions in spectral trends, which, once identified, can be further unraveled
with more targeted analysis. With emerging sophistication in passive
and active sensor technology, and presumably concomitant increase in
data resolution, it is imperative to continue development of techniques
to most efficiently conceptualize relationships between multiple di-
mensions of data.
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