

OCI, HARP2 and SPEXone have different viewing geometries, spatial resolutions and coverage

	Ocean Color Instrument (OCI)	Hyper-Angular Rainbow Polarimeter 2 (HARP2)	Spectro-Polarimeter for Planetary Exploration one (SPEXone)
UV-VIS radiance channels	240: continuous coverage in 340-890nm range at 2.5nm spectral resolution (5nm bandwidth)	4: 441, 549, 669, 873 nm	~200: continuous coverage in 385-770nm at 2-5nm spectral resolution
UV-VIS polarimetric channels	-	4: 441, 549, 669, 873 nm	~100: continuous coverage in 385-770nm at 10-40nm spectral resolution
SWIR radiance channels	7: 940, 1038, 1250, 1378, 1615, 2130, and 2260 nm	-	-
Viewing zenith angles at ground or top of atmosphere (TOA) for swath center	1: TOA 20° North in northern hemisphere, TOA 20° South in southern hemisphere to avoid ocean surface glint	60 angles between ± 57° TOA along track for 669nm, 10 angles for the other bands*	5: 0°, $\pm 20^\circ$ and $\pm 58^\circ$ at ground
Nadir view, at-ground swath width	2663km [@]	1,556 km	100km
Spatial Resolution	1x1km at nadir [@]	TBD, but roughly 5km ²	5.4 x 4.6 km [#] for all view angles

Level 1C: a common grid for all instruments

Data Level	Description
Level 0	Lowest level science data
Level 1A	Uncalibrated science data in archive format (e.g., netCDF)
Level 1B	Calibrated, geo-located science data as observed
Level 1C	Calibrated, geo-located, co-registered (resampled) science data
Level 2	Science products derived from Level-1B/C
Level 3	Temporally and spatially composited science products

"The guiding philosophy of the PACE LIC file format is to be a means to gather data from all instruments onto a common sampling grid. This grid will be equal area and contain observations for all instruments and viewing angles for a specified height."

At least 3 SAT members will use multi-sensor fusion and require data in a L1C format

Spatial resolution, swath

OCI: white; HARP2: teal; SPEXone: yellow

Spatial resolutions are multiples of each other, so they can be easily compared

- OCI: 5.2 x 5.2 km
- SPEXone: 2.6 x 2.6 km
- HARP2: TBD

Full swath to be included, even for HARP2, which may not have nadir views at edges

Data dimensions

Dimension	OCI	HARP2	SPEXone
NUMBER_OF_VIEWS	2ª	90 ^b	5
INTENSITY_BANDS_PER_VIEW	249	1	200
POLARIZATION_BANDS_PER_VIEW	0	1	100
BINS_ALONG_TRACK	TBD	TBD	TBD
BINS_ACROSS_TRACK	512	TBD	40

^a OCI has a 20° fore or aft tilt depending on spacecraft hemisphere

^b HARP2 will have 60 view angles for the channel centered at 669nm, 10 angles otherwise. Each channel will access unique viewing angles.

Field	Dimension	Dimension	Dimension	Dimension	Unit	Description
OBS_PER_VIEW	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	-	Unitless	Observations contributing to bin from each view
ž	and 🖌 Constant and A			NOTION BERGY POLICES	W on't stringtori	Lisolas vector compresent
	and all grants					
L POLSAMPLE	BINS ALCING DOX					
	2005_ALONG_TRACK	<hr/>				
		📃 🚿 Fie	ld for capt	uring (variable)	W m² an' pan'	
		and second second	and a second	NUM STOLEN SOUDE FOR VIEW	Winny stir, thory	
		numbe	er of obsei	vations in each	bin	
Q_OVER_I_NOISE						Bandom voise of Q_CYER_Lin bit
	eins_along_feacs					
DOLP NOISE						

Observation data structure

Γ

Field	Dimension	Dimension	Dimension	Dimension	Unit	Description
I	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	INTENSITY_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ µm ⁻¹	I Stokes vector component
L ROISE	OPIS, ALONG, TRACK	DING ACROSS TRACK	NUMBER OF VIEWS	RETENSITY BARDS PER VIEW	Wim ² sr ³ µm ³	Random noise of En bin
I_POLSAMPLE	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	POLARIZATION_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ µm ⁻¹	I Stokes vector at polarimeter spectral sampling
L POLSAMPLE NOISE	BINS_ALCHNG_TRACK	C.1.5. (0.811). 100.03	NUMBER OF VERS	POLARDACION_BANDL_PER_VIEW	W m ^a stri ponis	Random holse of L_POLSAMPLE in bin
0						Q Stokes vector component
	885 ALONG 10	Contraction and a				
		- I has	dimensio	ns of the intens	itv	
		11100	uniteristo	is of the meens	Wood Soft prof	
		spectra	a. I_POLSA	MPLE, for SPEX	lone	
		only, h	as been d	ownsampled to	the	
		pola	rimetric sp	bectral sensitivi	ty.	
			and the second		Unifices	
						Degree of Snear polarization

00	servat	ion da	ta stru	cture		
Field	Dimension	Dimension	Dimension	Dimension	Unit	Description
OBS_PER_VIEW		* NOIS	F indicates	random noise	in a hin	Boe-veticous contributing (1) bio from each we
	BING ALONG THACK	_11015		o random noise		3 Stokes vector component
I_NOISE	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	INTENSITY_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ μm ⁻¹	Random noise of I in bin
L POLSAMPLE						
I_POLSAMPLE NOISE	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	POLARIZATION_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ µm ⁻¹	Random noise of I_POLSAMPLE in bin
Q_NOISE	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	POLARIZATION_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ μm ⁻¹	Random noise of Q in bin
U	3845_410855_784CK		NUMBER DE LETVE	COLASIZATION BASICS (SEE VIEW)	Witter ² se ^{nti} pata ¹	U Stokes vector componenti
U_NOISE	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	POLARIZATION_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ µm ⁻¹	Random noise of U in bin
Q_OVER_I_NOISE	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	POLARIZATION_BANDS_PER_VIEW	Unitless	Random noise of Q_OVER_I in bin
U_QVER_J	KNS ALONG IRREE			POLARIZATION BARIN, PTR., NEW	idniriess	U over E (Athe a) Stokes ventor component
U_OVER_I_NOISE	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	POLARIZATION_BANDS_PER_VIEW	Unitless	Random noise of U_OVER_I in bin
0002	BRIS ALONG TRACK		NUMBER OF STREET	PERSONALISM BANKS SER SERV	Unitiess	Degree of linear polarization
DOLP_NOISE	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	POLARIZATION_BANDS_PER_VIEW	Unitless	Random noise of DOLP in bin

Observation data structure

Γ

Field	Dimension	Dimension	Dimension	Dimension	Unit	Description
OBS_PER_VEW			0 11	for HARP2		
			ά, υ			
		Q OVE	R I, U OV	'ER I (q,u) for S	PEXone	Randora aoise of Lin bìn
L.POLSAARPLE		Dol P (in	hoth) is re	dundant but co	nvonio	Concess vectors at poly-invector spectral sampling
_POLSAMPLE NOISE	2INS_ALONG_TRACK	DOLI (III	00111/1510		inverne	Random outse of I_POLSAIAPLE in this
Q	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	POLARIZATION_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ µm ⁻¹	Q Stokes vector component
	SINS ALCRIC TRACK			NOLANIATION SANDS FOR VENU	Wien? an' par'	Random noise of Q in bio
U	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	POLARIZATION_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ µm ⁻¹	U Stokes vector component
U_NOISE	SING ALONG DRACK			TO AND A DOG HANDS FOR USIN	$W 10^2 \mathrm{sc}^2 \mathrm{gass}^2$	Random outse of Q to (do
Q_OVER_I	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	POLARIZATION_BANDS_PER_VIEW	Unitless	Q over I (little q) Stokes vector component
Q_OVER_L_NO:SE	SING_ALONG_TRACK		NUMBER OF STREET	POLARIZATION BAACCUPER, SECH-	Unitiess	Random noise of C_BVER_Ha bin
U_OVER_I	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	POLARIZATION_BANDS_PER_VIEW	Unitless	U over I (little u) Stokes vector component
0_OVER_1_NOISE	BRAS JALONG JISACK	1000 AL 1000 1000.5	NUMBER OF VERS	ACULARIZATION, SAROS, ATA, MEN	Unitless	Random noise of U_OVER_U in bio
DOLP	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	POLARIZATION_BANDS_PER_VIEW	Unitless	Degree of linear polarization
DOLP_NOISE	BINS ALONG TRACK	BINS ACROSS TRACK	NUMBER OF VIEWS	POLARIZATION BANDS PER VIEW	Unitless	Random noise of DOLP in bin

Field	Dimension	Dimension	Dimension	Dimension	Unit	Description
OBS_PER_VIEW	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	-	Unitless	Observations contributing to bin from each view
1	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	INTENSITY_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ µm ⁻¹	l Stokes vector component
I_NOISE	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	INTENSITY_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ µm ⁻¹	Random noise of I in bin
CPOLSAMPLE NOISE						
						Ransiam noise of () in bio
O_OVER_I						
Q_OVER_L_NOESE		and a market				
U_GVER_I						
U_OVER_I_NOISE						
DOLP						
DOLP NORSE						Rendom noise of DOLP to bin

Observation data structure

HARP2

INTENSITY_BANDS_PER_VIEW = POLARIZATION_BANDS_PER_VIEW = 1

Field	Dimension	Dimension	Dimension	Dimension	Unit	Description
OBS_PER_VIEW	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	-	Unitless	Observations contributing to bin from each view
I	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	INTENSITY_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ µm ⁻¹	I Stokes vector component
I_NOISE	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	INTENSITY_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ µm ⁻¹	Random noise of I in bin
L_POLSAMPLE	SINS_ALONIS_TRACS					
CPOLSAMPLE NOISE						
Q	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	POLARIZATION_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ µm ⁻¹	Q Stokes vector component
Q_NOISE	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	POLARIZATION_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ µm ⁻¹	Random noise of Q in bin
U	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	POLARIZATION_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ µm ⁻¹	U Stokes vector component
U_NOISE	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	POLARIZATION_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ µm ⁻¹	Random noise of U in bin
Q_OVER_S						
Q_GVER_L_NORE						
U_OVER_J						
	BRHS_ALOINIS_FRACK				Unitions	
DOLP	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	POLARIZATION_BANDS_PER_VIEW	Unitless	Degree of linear polarization
DOLP_NOISE	BINS ALONG TRACK	BINS ACROSS TRACK	NUMBER OF VIEWS	POLARIZATION BANDS PER VIEW	Unitless	Random noise of DOLP in bin

Observation data structure					SPEXone		
Field	Dimension	Dimension	Dimension	Dimension	Unit	Description	
OBS_PER_VIEW	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	-	Unitless	Observations contributing to bin from each view	
1	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	INTENSITY_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ µm ⁻¹	I Stokes vector component	
I_NOISE	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	INTENSITY_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ µm ⁻¹	Random noise of I in bin	
I_POLSAMPLE	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	POLARIZATION_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ µm ⁻¹	I Stokes vector at polarimeter spectral sampling	
I_POLSAMPLE NOISE	BINS_ALONG_TRACK	BINS_ACROSS_TRACK	NUMBER_OF_VIEWS	POLARIZATION_BANDS_PER_VIEW	W m ⁻² sr ⁻¹ μm ⁻¹	Random noise of I_POLSAMPLE in bin	
Q_NOISE							

NUMBER_OF_VIEWS

NUMBER_OF_VIEWS

NUMBER_OF_VIEWS

NUMBER_OF_VIEWS

NUMBER_OF_VIEWS

NUMBER_OF_VIEWS

POLARIZATION_BANDS_PER_VIEW

POLARIZATION_BANDS_PER_VIEW

POLARIZATION_BANDS_PER_VIEW

POLARIZATION_BANDS_PER_VIEW

POLARIZATION_BANDS_PER_VIEW

POLARIZATION_BANDS_PER_VIEW

Unitless

Unitless

Unitless

Unitless

Unitless

Unitless

Q over I (little q) Stokes vector component

U over I (little u) Stokes vector component

Random noise of Q_OVER_I in bin

Random noise of U_OVER_I in bin

Degree of linear polarization

Random noise of DOLP in bin

Q_OVER_I

U_OVER_I

DOLP

DOLP_NOISE

Q_OVER_I_NOISE

U_OVER_I_NOISE

BINS_ALONG_TRACK

BINS_ALONG_TRACK

BINS_ALONG_TRACK

BINS_ALONG_TRACK

BINS_ALONG_TRACK

BINS_ALONG_TRACK

BINS_ACROSS_TRACK

BINS_ACROSS_TRACK

BINS_ACROSS_TRACK

BINS_ACROSS_TRACK

BINS_ACROSS_TRACK

BINS_ACROSS_TRACK

Observation data structure	ABOUT MISSIONS	Mer Caler X + ancelor, gale, ranas, govidala/josec/ Q to Q Our DMACT DATA DOCS SERVICES SOFTWARE & TOOLS GALLBEY HORIZM
https://oceancolor.gsfc.nasa.gov/data/pace	The PACE mission is Adopters.	set to launch in late 2022 or early 2023. Members of the OceanColor community are invited to Join the PACE Early <u>Processing</u> 8. As data becomes available for analysis, it will be linked below in the 'Early Adopters' section.
	Sensor Summary Data Record Period Version History	The Plankton, Aerosol, Cloud, and ocean Ecosystem (FACE) mission will make global ocean color measurements to provide extended data records on ocean ecology and global biogendhemistry (e.g., curbon cycle) along with and recebacits of the Earth system to climate are of critical importance. Our set of data records covers the entire reatine operations period from TBD. View Version listicary
Example template files	Data Access	OCI-AVIRIS Proxy Data IMAP2 and SPEXone Proxy Data L2, ACEPOL field campaign Download Level 1C example for: OCI, HARD2, or SPEXone
(Draft) Level 1C data format document	Documentation	Hodor Website C Hodor Mobile Ide Hodor Aug 7 Kinne Eufonium Twam Report 17 Hodor Timeline C Hodor Timeline C Hodor Timeline C Hodor Idea (Idea (Ide
	Early Adopters	The following data is available for analysis. Download Two-Line Element (TLE) file Countined 2022 (certire your) Epidement's Data Suggested Citation for PACE data:

Additional tools and other matters

Reaggregation tool: Recreates L1c file for a different altitude

Downsampling tool: Regenerates L1c file on a coarser spatial grid

Instrument uncertainty models: One sigma systematic uncertainty estimate for all parameters given the observations, geometries, calibration coefficients, etc.

Ancillary and cloud data derived from OCI will be put in L1C format to aid L1C – L2 algorithms

